You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/machine-learning/how-to-manage-workspace-terraform.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -67,7 +67,7 @@ The configuration below creates a workspace in an isolated network environment u
67
67
68
68
Some resources in Azure require globally unique names. Before deploying your resources using the following templates, set the `resourceprefix` variable to a value that is unique.
69
69
70
-
When using private link endpoints for both Azure Container Registry and Azure Machine Learning, Azure Container Registry tasks cannot be used for building [environment](/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py&preserve-view=true) images. Instead you can build images using an Azure Machine Learning compute cluster. To configure the cluster name of use, set the [image_build_compute_name](https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/machine_learning_workspace) argument. You can configure to [allow public access](./how-to-configure-private-link.md?tabs=python#enable-public-access) to a workspace that has a private link endpoint using the [public_network_access_enabled](https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/machine_learning_workspace) argument.
70
+
When using private link endpoints for both Azure Container Registry and Azure Machine Learning, Azure Container Registry tasks cannot be used for building [environment](/python/api/azure-ai-ml/azure.ai.ml.entities.environment) images. Instead you can build images using an Azure Machine Learning compute cluster. To configure the cluster name of use, set the [image_build_compute_name](https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/machine_learning_workspace) argument. You can configure to [allow public access](./how-to-configure-private-link.md?tabs=python#enable-public-access) to a workspace that has a private link endpoint using the [public_network_access_enabled](https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/machine_learning_workspace) argument.
The following code snippet demonstrates how to get the container registry information using the [Azure Machine Learning SDK](/python/api/overview/azure/ml/):
231
+
The following code snippet demonstrates how to get the container registry information using the [Azure Machine Learning SDK](/python/api/overview/azure/ai-ml-readme):
This code returns a value similar to `"/subscriptions/{GUID}/resourceGroups/{resourcegroupname}/providers/Microsoft.ContainerRegistry/registries/{ACRname}"`. The last part of the string is the name of the Azure Container Registry for the workspace.
@@ -268,21 +281,35 @@ Azure Container Registry can be configured to use a private endpoint. Use the fo
268
281
269
282
# [Python SDK](#tab/python)
270
283
271
-
The following code snippet demonstrates how to update the workspace to set a build compute using the [Azure Machine Learning SDK](/python/api/overview/azure/ml/). Replace `mycomputecluster` with the name of the cluster to use:
284
+
The following code snippet demonstrates how to update the workspace to set a build compute using the [Azure Machine Learning SDK](/python/api/overview/azure/ai-ml-readme). Replace `mycomputecluster` with the name of the cluster to use:
# To switch back to using ACR to build (if ACR is not in the VNet):
282
-
# ws.update(image_build_compute = '')
307
+
# ws.image_build_compute = ''
308
+
# ml_client.workspaces.begin_update(ws)
283
309
```
310
+
284
311
285
-
For more information, see the [update()](/python/api/azureml-core/azureml.core.workspace.workspace#update-friendly-name-none--description-none--tags-none--image-build-compute-none--enable-data-actions-none-) method reference.
312
+
For more information, see the [begin_update](/python/api/azure-ai-ml/azure.ai.ml.operations.workspaceoperations#azure-ai-ml-operations-workspaceoperations-begin-update) method reference.
286
313
287
314
# [Portal](#tab/portal)
288
315
@@ -293,54 +320,6 @@ Azure Container Registry can be configured to use a private endpoint. Use the fo
293
320
> [!TIP]
294
321
> When ACR is behind a VNet, you can also [disable public access](../container-registry/container-registry-access-selected-networks.md#disable-public-network-access) to it.
295
322
296
-
## Datastores and datasets
297
-
The following table lists the services that you need to skip validation for:
298
-
299
-
| Service | Skip validation required? |
300
-
| ----- |:-----:|
301
-
| Azure Blob storage | Yes |
302
-
| Azure File share | Yes |
303
-
| Azure Data Lake Store Gen1 | No |
304
-
| Azure Data Lake Store Gen2 | No |
305
-
| Azure SQL Database | Yes |
306
-
| PostgreSql | Yes |
307
-
308
-
> [!NOTE]
309
-
> Azure Data Lake Store Gen1 and Azure Data Lake Store Gen2 skip validation by default, so you don't have to do anything.
310
-
311
-
The following code sample creates a new Azure Blob datastore and sets `skip_validation=True`.
Copy file name to clipboardExpand all lines: articles/machine-learning/v1/how-to-create-register-datasets.md
+3-3Lines changed: 3 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -95,7 +95,7 @@ Create a TabularDataset with [the Python SDK](#create-a-tabulardataset) or [Azur
95
95
96
96
## Access datasets in a virtual network
97
97
98
-
If your workspace is in a virtual network, you must configure the dataset to skip validation. For more information on how to use datastores and datasets in a virtual network, see [Secure a workspace and associated resources](../how-to-secure-workspace-vnet.md#datastores-and-datasets).
98
+
If your workspace is in a virtual network, you must configure the dataset to skip validation. For more information on how to use datastores and datasets in a virtual network, see [Secure a workspace and associated resources](how-to-secure-workspace-vnet.md#datastores-and-datasets).
99
99
100
100
101
101
## Create datasets from datastores
@@ -119,7 +119,7 @@ To create datasets from a datastore with the Python SDK:
119
119
120
120
Use the [`from_files()`](/python/api/azureml-core/azureml.data.dataset_factory.filedatasetfactory#from-files-path--validate-true-) method on the `FileDatasetFactory` class to load files in any format and to create an unregistered FileDataset.
121
121
122
-
If your storage is behind a virtual network or firewall, set the parameter `validate=False` in your `from_files()` method. This bypasses the initial validation step, and ensures that you can create your dataset from these secure files. Learn more about how to [use datastores and datasets in a virtual network](../how-to-secure-workspace-vnet.md#datastores-and-datasets).
122
+
If your storage is behind a virtual network or firewall, set the parameter `validate=False` in your `from_files()` method. This bypasses the initial validation step, and ensures that you can create your dataset from these secure files. Learn more about how to [use datastores and datasets in a virtual network](how-to-secure-workspace-vnet.md#datastores-and-datasets).
123
123
124
124
```Python
125
125
from azureml.core import Workspace, Datastore, Dataset
@@ -156,7 +156,7 @@ Use the [`from_delimited_files()`](/python/api/azureml-core/azureml.data.dataset
156
156
157
157
See the [TabularDatasetFactory reference documentation](/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory) for information about supported file formats, as well as syntax and design patterns such as [multiline support](/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory#from-delimited-files-path--validate-true--include-path-false--infer-column-types-true--set-column-types-none--separator------header-true--partition-format-none--support-multi-line-false--empty-as-string-false--encoding--utf8--).
158
158
159
-
If your storage is behind a virtual network or firewall, set the parameter `validate=False` in your `from_delimited_files()` method. This bypasses the initial validation step, and ensures that you can create your dataset from these secure files. Learn more about how to use [datastores and datasets in a virtual network](../how-to-secure-workspace-vnet.md#datastores-and-datasets).
159
+
If your storage is behind a virtual network or firewall, set the parameter `validate=False` in your `from_delimited_files()` method. This bypasses the initial validation step, and ensures that you can create your dataset from these secure files. Learn more about how to use [datastores and datasets in a virtual network](how-to-secure-workspace-vnet.md#datastores-and-datasets).
160
160
161
161
The following code gets the existing workspace and the desired datastore by name. And then passes the datastore and file locations to the `path` parameter to create a new TabularDataset, `weather_ds`.
0 commit comments