|
22 | 22 | - name: Tutorials
|
23 | 23 | expanded: true
|
24 | 24 | items:
|
25 |
| - - name: Python get started (Day 1) |
| 25 | + - name: Azure ML in a day |
26 | 26 | expanded: true
|
27 | 27 | items:
|
28 | 28 | - name: 1. Run a Python script
|
|
31 | 31 | href: tutorial-1st-experiment-sdk-train.md
|
32 | 32 | - name: 3. Use your own data
|
33 | 33 | href: tutorial-1st-experiment-bring-data.md
|
34 |
| - - name: Jupyter Notebooks |
| 34 | + - name: Build models |
35 | 35 | items:
|
36 | 36 | - name: Train & deploy image classification
|
37 | 37 | displayName: MNIST
|
38 | 38 | href: tutorial-train-deploy-notebook.md
|
39 |
| - - name: Object detection with AutoML |
40 |
| - displayName: automl, automated, auto ml, computer vision, images, image model |
41 |
| - href: tutorial-auto-train-image-models.md |
42 |
| - |
43 |
| - - name: Studio |
44 |
| - items: |
45 |
| - - name: Automated ML (UI) |
46 |
| - items: |
| 39 | + - name: Create production ML pipelines (preview) |
| 40 | + href: tutorial-pipeline-python-sdk.md |
| 41 | + - name: Train a TensorFlow image classification model |
| 42 | + href: tutorial-train-deploy-image-classification-model-vscode.md |
| 43 | + - name: Automated ML |
| 44 | + items: |
| 45 | + - name: Object detection with AutoML (SDK) |
| 46 | + displayName: automl, automated, auto ml, computer vision, images, image model |
| 47 | + href: tutorial-auto-train-image-models.md |
47 | 48 | - name: Create automated ML experiments
|
48 |
| - displayName: automl, automated, auto ml, portal, ui |
| 49 | + displayName: automl, automated, auto ml, portal, studio, ui |
49 | 50 | href: tutorial-first-experiment-automated-ml.md
|
50 | 51 | - name: Forecast demand (Bike share data)
|
51 |
| - displayName: automl, automated, auto ml, portal, ui |
| 52 | + displayName: automl, automated, auto ml, portal, studio, ui |
52 | 53 | href: tutorial-automated-ml-forecast.md
|
53 | 54 | - name: Designer (drag-n-drop)
|
54 | 55 | items:
|
55 | 56 | - name: 1. Train a regression model
|
56 | 57 | displayName: studio
|
57 | 58 | href: tutorial-designer-automobile-price-train-score.md
|
58 |
| - - name: 2. Deploy that model |
| 59 | + - name: 2. Deploy the model |
59 | 60 | displayName: studio
|
60 | 61 | href: tutorial-designer-automobile-price-deploy.md
|
61 |
| - - name: Visual Studio Code |
62 |
| - items: |
63 |
| - - name: Train a TensorFlow image classification model |
64 |
| - href: tutorial-train-deploy-image-classification-model-vscode.md |
65 |
| - - name: Microsoft Power BI integration |
66 |
| - items: |
67 |
| - - name: "Part 1: Train and deploy models" |
68 |
| - href: tutorial-power-bi-custom-model.md |
69 |
| - - name: "Part 2: Consume in Power BI" |
70 |
| - href: /power-bi/connect-data/service-aml-integrate?context=azure/machine-learning/context/ml-context |
71 |
| - - name: Build a training pipeline (Python SDK V2)(preview) |
72 |
| - href: tutorial-pipeline-python-sdk.md |
73 | 62 | - name: Samples
|
74 | 63 | items:
|
75 | 64 | - name: Jupyter Notebooks
|
|
0 commit comments