Skip to content

Commit f20f655

Browse files
authored
Update how-to-r-deploy-r-model.md
Replace directory listing characters for the last file in a folder with U+2514 "BOX DRAWINGS LIGHT UP AND RIGHT". Also, correct the CLI deployment command to use "deployment.yml" as described in the file tree, not "r-deployment.yml".
1 parent e866d96 commit f20f655

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

articles/machine-learning/how-to-r-deploy-r-model.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -34,9 +34,9 @@ Create this folder structure for your project:
3434
📂 r-deploy-azureml
3535
├─📂 docker-context
3636
│ ├─ Dockerfile
37-
─ start_plumber.R
37+
─ start_plumber.R
3838
├─📂 src
39-
─ plumber.R
39+
─ plumber.R
4040
├─ deployment.yml
4141
├─ endpoint.yml
4242
```
@@ -303,7 +303,7 @@ A *deployment* is a set of resources required for hosting the model that does th
303303
1. Next, in your terminal execute the following CLI command to create the deployment (notice that you're setting 100% of the traffic to this model):
304304
305305
```azurecli
306-
az ml online-deployment create -f r-deployment.yml --all-traffic --skip-script-validation
306+
az ml online-deployment create -f deployment.yml --all-traffic --skip-script-validation
307307
```
308308
309309
> [!NOTE]
@@ -362,4 +362,4 @@ az ml online-endpoint delete --name r-endpoint-forecast
362362

363363
## Next steps
364364

365-
For more information about using R with Azure Machine Learning, see [Overview of R capabilities in Azure Machine Learning](how-to-r-overview-r-capabilities.md)
365+
For more information about using R with Azure Machine Learning, see [Overview of R capabilities in Azure Machine Learning](how-to-r-overview-r-capabilities.md)

0 commit comments

Comments
 (0)