Skip to content

Commit f396aab

Browse files
authored
Merge pull request #284985 from Blackmist/208384-fresh
delete/redirect
2 parents 1a7fcce + ff562c3 commit f396aab

File tree

6 files changed

+10
-179
lines changed

6 files changed

+10
-179
lines changed

articles/machine-learning/.openpublishing.redirection.machine-learning.json

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2977,13 +2977,13 @@
29772977
},
29782978
{
29792979
"source_path_from_root": "/articles/machine-learning/how-to-debug-pipelines-application-insights.md",
2980-
"redirect_url": "/azure/machine-learning/v1/how-to-log-pipelines-application-insights",
2980+
"redirect_url": "/azure/machine-learning/v1/how-to-debug-pipelines",
29812981
"redirect_document_id": false
29822982
},
29832983
{
29842984
"source_path_from_root": "/articles/machine-learning/v-fake/how-to-log-pipelines-application-insights.md",
2985-
"redirect_url": "/azure/machine-learning/how-to-log-pipelines-application-insights",
2986-
"redirect_document_id": true
2985+
"redirect_url": "/azure/machine-learning/how-to-debug-pipelines",
2986+
"redirect_document_id": false
29872987
},
29882988
{
29892989
"source_path_from_root": "/articles/machine-learning/how-to-debug-batch-predictions.md",

articles/machine-learning/toc.yml

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1446,8 +1446,6 @@
14461446
- name: Troubleshoot pipelines
14471447
displayName: designer
14481448
href: ./v1/how-to-debug-pipelines.md
1449-
- name: Log pipeline data to Application Insights
1450-
href: ./v1/how-to-log-pipelines-application-insights.md
14511449
- name: Troubleshoot the ParallelRunStep
14521450
displayName: debug_batch consume pipeline parallelrunstep inference
14531451
href: ./v1/how-to-debug-parallel-run-step.md

articles/machine-learning/v1/.openpublishing.redirection.machine-learning-v1.json

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,10 @@
11
{
22
"redirections": [
3+
{
4+
"source_path_from_root": "/articles/machine-learning/v1/how-to-log-pipelines-application-insights.md",
5+
"redirect_url": "/azure/machine-learning/how-to-debug-pipelines",
6+
"redirect_document_id": false
7+
},
38
{
49
"source_path_from_root": "/articles/machine-learning/v1/how-to-migrate-from-estimators-to-scriptrunconfig.md",
510
"redirect_url": "/azure/machine-learning/how-to-set-up-training-targets",

articles/machine-learning/v1/how-to-debug-pipelines.md

Lines changed: 2 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -187,21 +187,20 @@ Testing scripts locally is a great way to debug major code fragments and complex
187187

188188
### Logging options and behavior
189189

190-
The following table provides information for different debug options for pipelines. It isn't an exhaustive list, as other options exist besides just the Azure Machine Learning, Python, and OpenCensus ones shown here.
190+
The following table provides information for different debug options for pipelines. It isn't an exhaustive list, as other options exist besides just the Azure Machine Learning and Python ones shown here.
191191

192192
| Library | Type | Example | Destination | Resources |
193193
|----------------------------|--------|------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
194194
| Azure Machine Learning SDK | Metric | `run.log(name, val)` | Azure Machine Learning Portal UI | [How to track experiments](how-to-log-view-metrics.md)<br>[azureml.core.Run class](/python/api/azureml-core/azureml.core.run%28class%29) |
195195
| Python printing/logging | Log | `print(val)`<br>`logging.info(message)` | Driver logs, Azure Machine Learning designer | [How to track experiments](how-to-log-view-metrics.md)<br><br>[Python logging](https://docs.python.org/2/library/logging.html) |
196-
| OpenCensus Python | Log | `logger.addHandler(AzureLogHandler())`<br>`logging.log(message)` | Application Insights - traces | [Debug pipelines in Application Insights](./how-to-log-pipelines-application-insights.md)<br><br>[OpenCensus Azure Monitor Exporters](https://github.com/census-instrumentation/opencensus-python/tree/master/contrib/opencensus-ext-azure)<br>[Python logging cookbook](https://docs.python.org/3/howto/logging-cookbook.html) |
196+
197197

198198
#### Logging options example
199199

200200
```python
201201
import logging
202202

203203
from azureml.core.run import Run
204-
from opencensus.ext.azure.log_exporter import AzureLogHandler
205204

206205
run = Run.get_context()
207206

@@ -222,9 +221,6 @@ logger.info("I am a plain info statement, I will be sent to the driver logs.")
222221
handler = AzureLogHandler(connection_string='<connection string>')
223222
logger.addHandler(handler)
224223

225-
# Python logging with OpenCensus AzureLogHandler
226-
logger.warning("I am an OpenCensus warning statement, find me in Application Insights!")
227-
logger.error("I am an OpenCensus error statement with custom dimensions", {'step_id': run.id})
228224
```
229225

230226
## Azure Machine Learning designer
@@ -260,9 +256,6 @@ You can also find the log files for specific runs in the pipeline run detail pag
260256
> [!IMPORTANT]
261257
> To update a pipeline from the pipeline run details page, you must **clone** the pipeline run to a new pipeline draft. A pipeline run is a snapshot of the pipeline. It's similar to a log file, and cannot be altered.
262258
263-
## Application Insights
264-
For more information on using the OpenCensus Python library in this manner, see this guide: [Debug and troubleshoot machine learning pipelines in Application Insights](./how-to-log-pipelines-application-insights.md)
265-
266259
## Interactive debugging with Visual Studio Code
267260

268261
In some cases, you may need to interactively debug the Python code used in your ML pipeline. By using Visual Studio Code (VS Code) and debugpy, you can attach to the code as it runs in the training environment. For more information, visit the [interactive debugging in VS Code guide](how-to-debug-visual-studio-code.md#debug-and-troubleshoot-machine-learning-pipelines).

articles/machine-learning/v1/how-to-log-pipelines-application-insights.md

Lines changed: 0 additions & 165 deletions
This file was deleted.

0 commit comments

Comments
 (0)