Skip to content

Commit f538dbe

Browse files
authored
Merge pull request #248718 from sdgilley/sdg-update-v1-links
Move v1 article references to v1-archive branch on azureml-examples
2 parents f1e0319 + a88c1d7 commit f538dbe

File tree

4 files changed

+29
-23
lines changed

4 files changed

+29
-23
lines changed

.openpublishing.publish.config.json

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -416,6 +416,12 @@
416416
"branch": "main",
417417
"branch_mapping": {}
418418
},
419+
{
420+
"path_to_root": "azureml-examples-archive",
421+
"url": "https://github.com/azure/azureml-examples",
422+
"branch": "v1-archive",
423+
"branch_mapping": {}
424+
},
419425
{
420426
"path_to_root": "azureml-examples-batch-pup",
421427
"url": "https://github.com/azure/azureml-examples",

articles/machine-learning/includes/machine-learning-service-local-deploy-config.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,6 +16,6 @@ The entries in the `deploymentconfig.json` document map to the parameters for [L
1616
This JSON is an example deployment configuration for use with the CLI:
1717

1818

19-
:::code language="json" source="~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/deploymentconfig.json":::
19+
:::code language="json" source="~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/deploymentconfig.json":::
2020

2121
Save this JSON as a file called `deploymentconfig.json`.

articles/machine-learning/v1/how-to-deploy-and-where.md

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,7 @@ For more information on `az ml model register`, see the [reference documentation
138138

139139
You can register a model by providing the local path of the model. You can provide the path of either a folder or a single file on your local machine.
140140
<!-- pyhton nb call -->
141-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=register-model-from-local-file-code)]
141+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=register-model-from-local-file-code)]
142142

143143

144144
To include multiple files in the model registration, set `model_path` to the path of a folder that contains the files.
@@ -204,7 +204,7 @@ The two things you need to accomplish in your entry script are:
204204

205205
For your initial deployment, use a dummy entry script that prints the data it receives.
206206

207-
:::code language="python" source="~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/source_dir/echo_score.py":::
207+
:::code language="python" source="~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/source_dir/echo_score.py":::
208208

209209
Save this file as `echo_score.py` inside of a directory called `source_dir`. This dummy script returns the data you send to it, so it doesn't use the model. But it is useful for testing that the scoring script is running.
210210

@@ -225,7 +225,7 @@ You can use any [Azure Machine Learning inference curated environments](../conce
225225

226226
A minimal inference configuration can be written as:
227227

228-
:::code language="json" source="~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/dummyinferenceconfig.json":::
228+
:::code language="json" source="~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/dummyinferenceconfig.json":::
229229

230230
Save this file with the name `dummyinferenceconfig.json`.
231231

@@ -236,7 +236,7 @@ Save this file with the name `dummyinferenceconfig.json`.
236236

237237
The following example demonstrates how to create a minimal environment with no pip dependencies, using the dummy scoring script you defined above.
238238

239-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=inference-configuration-code)]
239+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=inference-configuration-code)]
240240

241241
For more information on environments, see [Create and manage environments for training and deployment](../how-to-use-environments.md).
242242

@@ -263,7 +263,7 @@ For more information, see the [deployment schema](reference-azure-machine-learni
263263

264264
The following Python demonstrates how to create a local deployment configuration:
265265

266-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=deployment-configuration-code)]
266+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=deployment-configuration-code)]
267267

268268
---
269269

@@ -290,9 +290,9 @@ az ml model deploy -n myservice \
290290
# [Python SDK](#tab/python)
291291

292292

293-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=deploy-model-code)]
293+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=deploy-model-code)]
294294

295-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=deploy-model-print-logs)]
295+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=deploy-model-print-logs)]
296296

297297
For more information, see the documentation for [Model.deploy()](/python/api/azureml-core/azureml.core.model.model#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false-) and [Webservice](/python/api/azureml-core/azureml.core.webservice.webservice).
298298

@@ -315,7 +315,7 @@ curl -v -X POST -H "content-type:application/json" \
315315

316316
# [Python SDK](#tab/python)
317317
<!-- python nb call -->
318-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=call-into-model-code)]
318+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=call-into-model-code)]
319319

320320
---
321321

@@ -324,7 +324,7 @@ curl -v -X POST -H "content-type:application/json" \
324324
Now it's time to actually load your model. First, modify your entry script:
325325

326326

327-
:::code language="python" source="~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/source_dir/score.py":::
327+
:::code language="python" source="~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/source_dir/score.py":::
328328

329329
Save this file as `score.py` inside of `source_dir`.
330330

@@ -334,7 +334,7 @@ Notice the use of the `AZUREML_MODEL_DIR` environment variable to locate your re
334334

335335
[!INCLUDE [cli v1](../includes/machine-learning-cli-v1.md)]
336336

337-
:::code language="json" source="~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/inferenceconfig.json":::
337+
:::code language="json" source="~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/inferenceconfig.json":::
338338

339339
Save this file as `inferenceconfig.json`
340340

@@ -377,9 +377,9 @@ az ml model deploy -n myservice \
377377

378378
# [Python SDK](#tab/python)
379379

380-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=re-deploy-model-code)]
380+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=re-deploy-model-code)]
381381

382-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=re-deploy-model-print-logs)]
382+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=re-deploy-model-print-logs)]
383383

384384
For more information, see the documentation for [Model.deploy()](/python/api/azureml-core/azureml.core.model.model#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false-) and [Webservice](/python/api/azureml-core/azureml.core.webservice.webservice).
385385

@@ -398,7 +398,7 @@ curl -v -X POST -H "content-type:application/json" \
398398

399399
# [Python SDK](#tab/python)
400400

401-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=send-post-request-code)]
401+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=send-post-request-code)]
402402

403403
---
404404

@@ -418,15 +418,15 @@ Change your deploy configuration to correspond to the compute target you've chos
418418

419419
The options available for a deployment configuration differ depending on the compute target you choose.
420420

421-
:::code language="json" source="~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/re-deploymentconfig.json":::
421+
:::code language="json" source="~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/re-deploymentconfig.json":::
422422

423423
Save this file as `re-deploymentconfig.json`.
424424

425425
For more information, see [this reference](reference-azure-machine-learning-cli.md#deployment-configuration-schema).
426426

427427
# [Python SDK](#tab/python)
428428

429-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=deploy-model-on-cloud-code)]
429+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=deploy-model-on-cloud-code)]
430430

431431
---
432432

@@ -460,9 +460,9 @@ az ml service get-logs -n myservice \
460460
# [Python SDK](#tab/python)
461461

462462

463-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=re-deploy-service-code)]
463+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=re-deploy-service-code)]
464464

465-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=re-deploy-service-print-logs)]
465+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=re-deploy-service-print-logs)]
466466

467467
For more information, see the documentation for [Model.deploy()](/python/api/azureml-core/azureml.core.model.model#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false-) and [Webservice](/python/api/azureml-core/azureml.core.webservice.webservice).
468468

@@ -473,9 +473,9 @@ For more information, see the documentation for [Model.deploy()](/python/api/azu
473473

474474
When you deploy remotely, you may have key authentication enabled. The example below shows how to get your service key with Python in order to make an inference request.
475475

476-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=call-remote-web-service-code)]
476+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=call-remote-web-service-code)]
477477

478-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=call-remote-webservice-print-logs)]
478+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=call-remote-webservice-print-logs)]
479479

480480

481481

@@ -515,7 +515,7 @@ The following table describes the different service states:
515515
[!INCLUDE [cli v1](../includes/machine-learning-cli-v1.md)]
516516

517517

518-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/2.deploy-local-cli.ipynb?name=delete-resource-code)]
518+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/2.deploy-local-cli.ipynb?name=delete-resource-code)]
519519

520520
```azurecli-interactive
521521
az ml service delete -n myservice
@@ -531,7 +531,7 @@ Read more about [deleting a webservice](/cli/azure/ml(v1)/computetarget/create#a
531531

532532
# [Python SDK](#tab/python)
533533

534-
[!Notebook-python[] (~/azureml-examples-main/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=delete-resource-code)]
534+
[!Notebook-python[] (~/azureml-examples-archive/v1/python-sdk/tutorials/deploy-local/1.deploy-local.ipynb?name=delete-resource-code)]
535535

536536
To delete a deployed web service, use `service.delete()`.
537537
To delete a registered model, use `model.delete()`.

articles/machine-learning/v1/tutorial-pipeline-python-sdk.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -269,7 +269,7 @@ Once the data has been converted from the compressed format to CSV files, it can
269269

270270
With larger pipelines, it's a good practice to put each step's source code in a separate directory (`src/prepare/`, `src/train/`, and so on) but for this tutorial, just use or create the file `train.py` in the same `keras-mnist-fashion/` source directory.
271271

272-
:::code language="python" source="~/azureml-examples-main/v1/python-sdk/tutorials/using-pipelines/keras-mnist-fashion/train.py" highlight="16-19,84-89,104-119":::
272+
:::code language="python" source="~/azureml-examples-archive/v1/python-sdk/tutorials/using-pipelines/keras-mnist-fashion/train.py" highlight="16-19,84-89,104-119":::
273273

274274
Most of this code should be familiar to ML developers:
275275

0 commit comments

Comments
 (0)