Skip to content

Commit f5612cf

Browse files
committed
Fix issues in the PR.
1 parent 57f5cea commit f5612cf

File tree

3 files changed

+25
-280
lines changed

3 files changed

+25
-280
lines changed

articles/machine-learning/toc.yml

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -96,6 +96,8 @@
9696
href: tutorial-experiment-train-models-using-features.md
9797
- name: Enable recurrent materialization and run batch inference
9898
href: tutorial-enable-recurrent-materialization-run-batch-inference.md
99+
- name: Network isolation with feature store
100+
href: tutorial-network-isolation-for-feature-store.md
99101
# v1
100102
- name: Python get started (Day 1)
101103
items:

articles/machine-learning/tutorial-network-isolation-for-feature-store.md

Lines changed: 23 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ Part 1 of this tutorial series showed how to create a feature set specification
4444
managed_network:
4545
isolation_mode: allow_internet_outbound
4646
```
47-
2. Execute these commands to update the workspace and provision the managed virtual network for serverless Spark jobs:
47+
1. Execute these commands to update the workspace and provision the managed virtual network for serverless Spark jobs:
4848
4949
```cli
5050
az ml workspace update --file network.yml --resource-group my_resource_group --name
@@ -74,35 +74,35 @@ To prepare the notebook environment for development:
7474

7575
You can also download a zip file from the [azureml-examples](https://github.com/azure/azureml-examples) repository. At this page, first select the `code` dropdown, and then select `Download ZIP`. Then, unzip the contents into a folder on your local device.
7676

77-
2. Upload the feature store samples directory to the project workspace
77+
1. Upload the feature store samples directory to the project workspace
7878

7979
1. In the Azure Machine Learning workspace, open the Azure Machine Learning studio UI.
80-
2. Select **Notebooks** in left navigation panel.
81-
3. Select your user name in the directory listing.
82-
4. Select ellipses (**...**) and then select **Upload folder**.
83-
5. Select the feature store samples folder from the cloned directory path: `azureml-examples/sdk/python/featurestore-sample`.
80+
1. Select **Notebooks** in left navigation panel.
81+
1. Select your user name in the directory listing.
82+
1. Select ellipses (**...**) and then select **Upload folder**.
83+
1. Select the feature store samples folder from the cloned directory path: `azureml-examples/sdk/python/featurestore-sample`.
8484

85-
3. Run the tutorial
85+
1. Run the tutorial
8686

8787
* Option 1: Create a new notebook, and execute the instructions in this document, step by step.
8888
* Option 2: Open existing notebook `featurestore_sample/notebooks/sdk_and_cli/network_isolation/Network Isolation for Feature store.ipynb`. You may keep this document open and refer to it for more explanation and documentation links.
8989

9090
1. Select **Serverless Spark Compute** in the top navigation **Compute** dropdown. This operation might take one to two minutes. Wait for a status bar in the top to display **Configure session**.
91-
2. Select **Configure session** in the top status bar.
92-
3. Select **Python packages**.
93-
4. Select **Upload conda file**.
94-
5. Select file `azureml-examples/sdk/python/featurestore-sample/project/env/conda.yml` located on your local device.
95-
6. (Optional) Increase the session time-out (idle time in minutes) to reduce the serverless spark cluster startup time.
91+
1. Select **Configure session** in the top status bar.
92+
1. Select **Python packages**.
93+
1. Select **Upload conda file**.
94+
1. Select file `azureml-examples/sdk/python/featurestore-sample/project/env/conda.yml` located on your local device.
95+
1. (Optional) Increase the session time-out (idle time in minutes) to reduce the serverless spark cluster startup time.
9696

97-
4. This code cell starts the Spark session. It needs about 10 minutes to install all dependencies and start the Spark session.
97+
1. This code cell starts the Spark session. It needs about 10 minutes to install all dependencies and start the Spark session.
9898

9999
[!notebook-python[] (~/azureml-examples-main/sdk/python/featurestore_sample/notebooks/sdk_and_cli/network_isolation/Network Isolation for Feature store.ipynb?name=start-spark-session)]
100100

101-
5. Set up the root directory for the samples
101+
1. Set up the root directory for the samples
102102

103103
[!notebook-python[] (~/azureml-examples-main/sdk/python/featurestore_sample/notebooks/sdk_and_cli/network_isolation/Network Isolation for Feature store.ipynb?name=root-dir)]
104104

105-
6. Set up the Azure Machine Learning CLI:
105+
1. Set up the Azure Machine Learning CLI:
106106

107107
* Install the Azure Machine Learning CLI extension
108108

@@ -151,7 +151,7 @@ For this tutorial, we'll create three separate storage containers in the same AD
151151

152152
[!notebook-python[] (~/azureml-examples-main/sdk/python/featurestore_sample/notebooks/sdk_and_cli/network_isolation/Network Isolation for Feature store.ipynb?name=create-obs-cli)]
153153

154-
2. Copy the sample data required for this tutorial series into the newly created storage containers.
154+
1. Copy the sample data required for this tutorial series into the newly created storage containers.
155155

156156
1. To write data to the storage containers, ensure that **Contributor** and **Storage Blob Data Contributor** roles are assigned to the user identity on the created ADLS Gen2 storage account in the Azure portal [following these steps](../role-based-access-control/role-assignments-portal.md).
157157

@@ -162,15 +162,15 @@ For this tutorial, we'll create three separate storage containers in the same AD
162162

163163
[!notebook-python[] (~/azureml-examples-main/sdk/python/featurestore_sample/notebooks/sdk_and_cli/network_isolation/Network Isolation for Feature store.ipynb?name=copy-transact-data)]
164164

165-
2. Copy sample source data for account feature set used in this tutorial from a public storage account to the newly created storage account.
165+
1. Copy sample source data for account feature set used in this tutorial from a public storage account to the newly created storage account.
166166

167167
[!notebook-python[] (~/azureml-examples-main/sdk/python/featurestore_sample/notebooks/sdk_and_cli/network_isolation/Network Isolation for Feature store.ipynb?name=copy-account-data)]
168168

169-
3. Copy sample observation data used for training from a public storage account to the newly created storage account.
169+
1. Copy sample observation data used for training from a public storage account to the newly created storage account.
170170

171171
[!notebook-python[] (~/azureml-examples-main/sdk/python/featurestore_sample/notebooks/sdk_and_cli/network_isolation/Network Isolation for Feature store.ipynb?name=copy-obs-train-data)]
172172

173-
4. Copy sample observation data used for batch inference from a public storage account to the newly created storage account.
173+
1. Copy sample observation data used for batch inference from a public storage account to the newly created storage account.
174174

175175
[!notebook-python[] (~/azureml-examples-main/sdk/python/featurestore_sample/notebooks/sdk_and_cli/network_isolation/Network Isolation for Feature store.ipynb?name=copy-obs-batch-data)]
176176

@@ -180,7 +180,7 @@ For this tutorial, we'll create three separate storage containers in the same AD
180180

181181
[!notebook-python[] (~/azureml-examples-main/sdk/python/featurestore_sample/notebooks/sdk_and_cli/network_isolation/Network Isolation for Feature store.ipynb?name=disable-pna-gen2-cli)]
182182

183-
2. Set ARM IDs for the offline store, source data, and observation data containers.
183+
1. Set ARM IDs for the offline store, source data, and observation data containers.
184184

185185
[!notebook-python[] (~/azureml-examples-main/sdk/python/featurestore_sample/notebooks/sdk_and_cli/network_isolation/Network Isolation for Feature store.ipynb?name=set-container-arm-ids)]
186186

@@ -192,11 +192,11 @@ For this tutorial, we'll create three separate storage containers in the same AD
192192

193193
[!notebook-python[] (~/azureml-examples-main/sdk/python/featurestore_sample/notebooks/sdk_and_cli/network_isolation/Network Isolation for Feature store.ipynb?name=define-uai-name)]
194194

195-
2. This code cell creates the UAI.
195+
1. This code cell creates the UAI.
196196

197197
[!notebook-python[] (~/azureml-examples-main/sdk/python/featurestore_sample/notebooks/sdk_and_cli/network_isolation/Network Isolation for Feature store.ipynb?name=create-uai-cli)]
198198

199-
3. This code cell retrieves the principal ID, client ID, and ARM ID property values for the created UAI.
199+
1. This code cell retrieves the principal ID, client ID, and ARM ID property values for the created UAI.
200200

201201
[!notebook-python[] (~/azureml-examples-main/sdk/python/featurestore_sample/notebooks/sdk_and_cli/network_isolation/Network Isolation for Feature store.ipynb?name=retrieve-uai-props)]
202202

@@ -328,7 +328,7 @@ For this tutorial, we'll create three separate storage containers in the same AD
328328

329329
You can also verify the outbound rules from the Azure portal by navigating to **Networking** from left navigation panel for the project workspace and then opening **Workspace managed outbound access** tab.
330330

331-
:::image type="content" source="./media/tutorial-network-isolation-for-feature-store/project-workspace-outbound-rules.png" lightbox="./media/tutorial-network-isolation-for-feature-store/project-workspace-outbound-rules.png" alt-text="Expandable diagram that shows outbound rules for a project workspace in Azure portal.":::
331+
:::image type="content" source="./media/tutorial-network-isolation-for-feature-store/project-workspace-outbound-rules.png" lightbox="./media/tutorial-network-isolation-for-feature-store/project-workspace-outbound-rules.png" alt-text="This screenshot shows outbound rules for a project workspace in Azure portal.":::
332332

333333
## Prototype and develop a transaction rolling aggregation feature set
334334

0 commit comments

Comments
 (0)