Skip to content

Commit f5c74a8

Browse files
committed
Revision
1 parent 7130906 commit f5c74a8

File tree

1 file changed

+22
-41
lines changed

1 file changed

+22
-41
lines changed

articles/machine-learning/how-to-designer-import-data.md

Lines changed: 22 additions & 41 deletions
Original file line numberDiff line numberDiff line change
@@ -14,83 +14,66 @@ ms.date: 01/16/2020
1414

1515
# Import your data into Azure Machine Learning designer (preview)
1616

17-
You can use your own data in Azure Machine Learning designer to create predictive analytics solutions. You can import data into the designer in one of two ways:
17+
In this article, you learn how to import your own data in the designer to create custom solutions. You can import data into the designer two ways:
1818

19-
* **Azure Machine Learning datasets** - Register [datasets](concept-data.md#datasets) in Azure Machine Learning to help you manage datasets and use advanced features.
19+
* **Azure Machine Learning datasets** - Register [datasets](concept-data.md#datasets) in Azure Machine Learning to enable advanced features that help you manage your data.
2020
* **Import Data module** - Use the [Import Data](algorithm-module-reference/import-data.md) module to directly access data from online datasources.
2121

2222
To learn more about the differences between datasets and datastores, see [Data access in Azure Machine Learning](concept-data.md).
2323

24-
## Import data using datasets
24+
## Use Azure Machine Learning datasets
2525

2626
We recommend that you use [Azure Machine Learning datasets](concept-data.md#datasets) when you import data into the designer. When you register a dataset, you can take full advantage of advanced data features like [versioning and tracking](how-to-version-track-datasets.md) and [data monitoring](how-to-monitor-datasets.md).
2727

2828

2929
### Register a dataset
3030

31-
Register a dataset [programatically with the SDK](how-to-create-register-datasets.md#use-the-sdk) or [visually in Azure Machine Learning studio](how-to-create-register-datasets.md#use-the-ui).
31+
You can register existing datasets [programatically with the SDK](how-to-create-register-datasets.md#use-the-sdk) or [visually in Azure Machine Learning studio](how-to-create-register-datasets.md#use-the-ui).
3232

33-
You can also register the output for any module as a dataset directly in the designer.
33+
However, you can also register the output for any designer module as a dataset.
3434

3535
1. Select the module that outputs the data you want to register.
3636

3737
1. In the properties pane, select **Outputs** > **Register dataset**.
3838

3939
![Screenshot showing how to navigate to the Register Dataset option](media/how-to-designer-import-data/register-dataset-designer.png)
4040

41-
### Use datasets
41+
### Use a dataset
4242

43-
Any dataset registered to your workspace will appear, you aren't limited to datasets created in the designer.
44-
45-
> [!NOTE]
46-
> The designer currently only supports processing [tabular datasets](how-to-create-register-datasets.md#dataset-types). For other datasets which need [file datasets](how-to-create-register-datasets.md#dataset-types), use the Azure Machine Learning SDK available for Python or R.
47-
48-
Registered datasets can be found in the module palette, under **Datasets** > **My Datasets**. To use a dataset, drag and drop the dataset onto the pipeline canvas. Then, connect the output port of the dataset to other modules in the palette.
43+
Your registered datasets can be found in the module palette, under **Datasets** > **My Datasets**. To use a dataset, drag and drop it onto the pipeline canvas. Then, connect the output port of the dataset to other modules in the palette.
4944

5045
![Screenshot showing location of saved datasets in the designer palette](media/how-to-designer-import-data/use-datasets-designer.png)
5146

52-
## Import data using the Import Data module
53-
54-
You can also use the [Import Data](algorithm-module-reference/import-data.md) module to import data directly from either Azure Machine Learning [datastores](concept-data.md#datastores) or HTTP URLs. We recommend you create a dataset first to take full advantage of advanced data features like versioning and monitoring.
47+
Any [file datasets](how-to-create-register-datasets.md#dataset-types) registered to your machine learning workspace will appear in the module palette. You aren't limited to only datasets created in the designer.
5548

5649
> [!NOTE]
57-
> Pipelines converted from the visual interface will default to the **Import Data** module. If you are using a converted visual interface pipeline, we recommend creating a dataset and importing data via the dataset method.
58-
59-
### Create a new datastore
50+
> The designer currently only supports processing [tabular datasets](how-to-create-register-datasets.md#dataset-types). If you want to use [file datasets](how-to-create-register-datasets.md#dataset-types), use the Azure Machine Learning SDK available for Python and R.
6051
61-
Creating a datastore can be done [programatically with the SDK](how-to-access-data.md#create-and-register-datastores) or [visually in Azure Machine Learning studio](how-to-access-data.md#azure-machine-learning-studio).
62-
63-
You can also create a datastore directly the designer through the **Import Data** module.
64-
65-
1. Drag and drop an **Import Data** module to the pipeline canvas.
66-
1. Select the **Import Data** module.
67-
1. In the properties pane, select **New datastore**
68-
1. Select the datastore type.
69-
1. Provide valid authentication.
70-
71-
> [!NOTE]
72-
> You may be asked for different authentication information depending on the type of datasource you are connecting to.
52+
## Import data using the Import Data module
7353

74-
### Import Data
54+
We recommend that you use datasets to import data in the designer. However, you can also use the [Import Data](algorithm-module-reference/import-data.md) module. The Import Data module skips registering your datasets and imports data directly from [datastores](concept-data.md#datastores) or HTTP URLs.
7555

76-
For more information on how to use the Import Data module, see its [algorithm module reference page](algorithm-module-reference/import-data.md).
56+
For detailed information on how to use the Import Data module, see the [Import Data reference page](algorithm-module-reference/import-data.md).
7757

7858

79-
## Supported data sources
59+
## Supported sources
8060

81-
There are two methods for importing data in the designer, this section lists the supported data sources for datastores and [tabular datasets](how-to-create-register-datasets.md#dataset-types).
61+
This section lists the supported data sources for the designer. You can bring data into the designer from either a datastore or from [tabular datasets](how-to-create-register-datasets.md#dataset-types).
8262

63+
### Datastore sources
8364
For a list of supported datastore sources, see [Access data in Azure storage services](how-to-access-data.md#supported-data-storage-service-types).
8465

66+
### Tabular dataset sources
67+
8568
The designer supports tabular datasets created from the following sources:
8669
* Delimited files
8770
* JSON files
8871
* Parquet files
8972
* SQL queries
9073

91-
## Supported data types
74+
## Data types
9275

93-
The designer recognizes the following data types:
76+
The designer internally recognizes the following data types:
9477

9578
* String
9679
* Integer
@@ -100,12 +83,10 @@ The designer recognizes the following data types:
10083

10184
The designer uses an internal data type to pass data between modules. You can explicitly convert your data into data table format using the [Convert to Dataset](algorithm-module-reference/convert-to-dataset.md) module.
10285

103-
Any module that accepts formats other than data table will convert the data to data table silently before passing it to the next module.
104-
105-
## Data capacities
86+
## Data constraints
10687

107-
Modules in Azure Machine Learning designer are limited by the size of the compute target. For larger datasets, you should use a larger Azure Machine Learning compute resource. For more information on Azure Machine Learning compute, see [What are compute targets in Azure Machine Learning?](concept-compute-target.md#azure-machine-learning-compute-managed)
88+
Modules in the designer are limited by the size of the compute target. For larger datasets, you should use a larger Azure Machine Learning compute resource. For more information on Azure Machine Learning compute, see [What are compute targets in Azure Machine Learning?](concept-compute-target.md#azure-machine-learning-compute-managed)
10889

10990
## Next steps
11091

111-
Learn the basics of the designer with [Tutorial: Predict automobile price with the designer](tutorial-designer-automobile-price-train-score.md)
92+
Learn the basics of the designer with [Tutorial: Predict automobile price with the designer](tutorial-designer-automobile-price-train-score.md).

0 commit comments

Comments
 (0)