You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/machine-learning/how-to-setup-mlops-azureml.md
+12-34Lines changed: 12 additions & 34 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -154,11 +154,11 @@ The Azure DevOps setup is successfully finished.
154
154
155
155
1. Open the Repos section and select**Import Repository**
156
156
157
-

157
+

158
158
159
159
1. Enter https://github.com/Azure/mlops-v2-ado-demo into the Clone URL field. Click import at the bottom of the page
160
160
161
-

161
+

162
162
163
163
1. After you have imported the demo repo, Make you also import the `mlops-template` repo.
164
164
@@ -168,7 +168,7 @@ The Azure DevOps setup is successfully finished.
168
168
169
169
1. Enter https://github.com/Azure/mlops-templates into the Clone URL field. Click import at the bottom of the page
170
170
171
-

171
+

172
172
173
173
> [!TIP]
174
174
> Learn more about the MLOps v2 accelerator structure and the MLOps [template](https://github.com/Azure/mlops-v2/)
@@ -223,7 +223,7 @@ This step deploys the training pipeline to the Azure Machine Learning workspace
223
223
224
224
1. Select **New Pipeline**.
225
225
226
-

226
+

227
227
228
228
1. Select **Azure Repos Git**.
229
229
@@ -258,7 +258,7 @@ This step deploys the training pipeline to the Azure Machine Learning workspace
258
258
259
259
1. Select **New Pipeline**.
260
260
261
-

261
+

262
262
263
263
1. Select **Azure Repos Git**.
264
264
@@ -272,17 +272,6 @@ This step deploys the training pipeline to the Azure Machine Learning workspace
272
272
273
273
1. Select `main` as a branch and choose `/mlops/devops-pipelines/deploy-model-training-pipeline.yml`, then select **Continue**.
274
274
275
-
1. Before running the pipeline, the repository location for the mlops-templates will need to be updated. Modify the **resources** section of the pipeline the snippet below.
276
-
277
-
``` yaml
278
-
resources:
279
-
repositories:
280
-
- repository: mlops-templates # Template Repo
281
-
type: git
282
-
name: mlops-templates
283
-
ref: main
284
-
```
285
-
286
275
1. **Save and Run** the pipeline
287
276
288
277
> [!NOTE]
@@ -318,7 +307,7 @@ This step deploys the training pipeline to the Azure Machine Learning workspace
318
307
319
308
1. Select **New Pipeline**.
320
309
321
-

310
+

322
311
323
312
1. Select **Azure Repos Git**.
324
313
@@ -332,29 +321,18 @@ This step deploys the training pipeline to the Azure Machine Learning workspace
- For Managed Batch Endpoint `/mlops/devops-pipelines/deploy-batch-endpoint-pipeline.yml`
338
325
339
-
Then select**Continue**.
340
-
341
-
1. Before running the pipeline, the repository location for the **mlops-templates** will need to be updated. Modify the **resources** section of the pipeline the snippet below.
342
-
343
-
``` yaml
344
-
resources:
345
-
repositories:
346
-
- repository: mlops-templates # Template Repo
347
-
type: git
348
-
name: mlops-templates
349
-
ref: main
350
-
```
326
+
- For Managed Online Endpoint `/mlops/devops-pipelines/deploy-online-endpoint-pipeline.yml`
327
+
328
+
Then select**Continue**.
351
329
352
330
1. Batch/Online endpoint names need to be unique, so please change **[your endpoint-name]** to another unique name and thenselect**Run**.
353
331
354
332

355
333
356
-
> [!IMPORTANT]
357
-
> If the run fails due to an existing online endpoint name, recreate the pipeline as described above and change **[your endpoint-name]** to **[your endpoint-name (random number)]**
334
+
> [!IMPORTANT]
335
+
> If the run fails due to an existing online endpoint name, recreate the pipeline as described above and change **[your endpoint-name]** to **[your endpoint-name (random number)]**
0 commit comments