Skip to content

Commit f74bf31

Browse files
Merge pull request #253197 from ssalgadodev/patch-39
Update concept-automl-forecasting-methods.md
2 parents 73972a3 + 1e8d074 commit f74bf31

File tree

1 file changed

+3
-2
lines changed

1 file changed

+3
-2
lines changed

articles/machine-learning/concept-automl-forecasting-methods.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ ms.service: machine-learning
1010
ms.subservice: automl
1111
ms.topic: conceptual
1212
ms.custom: contperf-fy21q1, automl, FY21Q4-aml-seo-hack, sdkv2, event-tier1-build-2022
13-
ms.date: 01/27/2023
13+
ms.date: 09/27/2023
1414
show_latex: true
1515
---
1616

@@ -165,7 +165,7 @@ Each Series in Own Group (1:1) | All Series in Single Group (N:1)
165165
-------------------| -----------------
166166
Naive, Seasonal Naive, Average, Seasonal Average, Exponential Smoothing, ARIMA, ARIMAX, Prophet | Linear SGD, LARS LASSO, Elastic Net, K Nearest Neighbors, Decision Tree, Random Forest, Extremely Randomized Trees, Gradient Boosted Trees, LightGBM, XGBoost, TCNForecaster
167167

168-
More general model groupings are possible via AutoML's Many-Models solution; see our [Many Models- Automated ML notebook](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/forecasting-many-models/auto-ml-forecasting-many-models.ipynb) and [Hierarchical time series- Automated ML notebook](https://github.com/Azure/azureml-examples/blob/v1-archive/v1/python-sdk/tutorials/automl-with-azureml/forecasting-hierarchical-timeseries/auto-ml-forecasting-hierarchical-timeseries.ipynb).
168+
More general model groupings are possible via AutoML's Many-Models solution; see our [Many Models- Automated ML notebook](https://github.com/Azure/azureml-examples/blob/main/sdk/python/jobs/pipelines/1k_demand_forecasting_with_pipeline_components/automl-forecasting-demand-many-models-in-pipeline/automl-forecasting-demand-many-models-in-pipeline.ipynb) and [Hierarchical time series- Automated ML notebook](https://github.com/Azure/azureml-examples/blob/main/sdk/python/jobs/pipelines/1k_demand_forecasting_with_pipeline_components/automl-forecasting-demand-hierarchical-timeseries-in-pipeline/automl-forecasting-demand-hierarchical-timeseries-in-pipeline.ipynb).
169169

170170
## Next steps
171171

@@ -174,3 +174,4 @@ More general model groupings are possible via AutoML's Many-Models solution; see
174174
* Learn about how AutoML creates [features from the calendar](./concept-automl-forecasting-calendar-features.md).
175175
* Learn about how AutoML creates [lag features](./concept-automl-forecasting-lags.md).
176176
* Read answers to [frequently asked questions](./how-to-automl-forecasting-faq.md) about forecasting in AutoML.
177+

0 commit comments

Comments
 (0)