Skip to content

Commit f826d5d

Browse files
authored
Merge pull request #206981 from AbeOmor/patch-57
Update the model article with support matrix
2 parents 6c37c90 + d4abccd commit f826d5d

File tree

1 file changed

+27
-1
lines changed

1 file changed

+27
-1
lines changed

articles/machine-learning/how-to-manage-models.md

Lines changed: 27 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -28,6 +28,32 @@ Azure Machine Learning allows you to work with different types of models. In thi
2828
* The Azure Machine Learning [SDK v2 for Python](https://aka.ms/sdk-v2-install).
2929
* The Azure Machine Learning [CLI v2](how-to-configure-cli.md).
3030

31+
## Supported paths
32+
33+
When you provide a model you want to register, you'll need to specify a `path` parameter that points to the data or job location. Below is a table that shows the different data locations supported in Azure Machine Learning and examples for the `path` parameter:
34+
35+
36+
|Location | Examples |
37+
|---------|---------|
38+
|A path on your local computer | `mlflow-model/model.pkl` |
39+
|A path on an AzureML Datastore | `azureml://datastores/<datastore-name>/paths/<path_on_datastore>` |
40+
|A path from an AzureML job | `azureml://jobs/<job-name>/outputs/<output-name>/paths/<path-to-model-relative-to-the-named-output-location>` |
41+
|A path from an MLflow job | `runs:/<run-id>/<path-to-model-relative-to-the-root-of-the-artifact-location>` |
42+
43+
## Supported modes
44+
45+
When you run a job with model inputs/outputs, you can specify the *mode* - for example, whether you would like the model to be read-only mounted or downloaded to the compute target. The table below shows the possible modes for different type/mode/input/output combinations:
46+
47+
Type | Input/Output | `direct` | `download` | `ro_mount`
48+
------ | ------ | :---: | :---: | :---: |
49+
`custom` file | Input | ✓ | | |
50+
`custom` folder | Input | ✓ | ✓ | ✓ |
51+
`mlflow` | Input | | ✓ | ✓ |
52+
`custom` file | Output | ✓ | ✓ | ✓ |
53+
`custom` folder | Output | ✓ | ✓ | ✓ |
54+
`mlflow` | Output | ✓ | ✓ | ✓ |
55+
56+
3157
## Create a model in the model registry
3258

3359
[Model registration](concept-model-management-and-deployment.md) allows you to store and version your models in the Azure cloud, in your workspace. The model registry helps you organize and keep track of your trained models.
@@ -71,7 +97,7 @@ You can create a model from a cloud path by using any one of the following suppo
7197
az ml model create --name my-model --version 1 --path azureml://datastores/myblobstore/paths/models/cifar10/cifar.pt
7298
```
7399

74-
The examples use the shorthand `azureml` scheme for pointing to a path on the `datastore` by using the syntax `azureml://datastores/${{datastore-name}}/paths/${{path_on_datastore}}`.
100+
The examples use the shorthand `azureml` scheme for pointing to a path on the `datastore` by using the syntax `azureml://datastores/<datastore-name>/paths/<path_on_datastore>`.
75101

76102
For a complete example, see the [CLI reference](/cli/azure/ml/model).
77103

0 commit comments

Comments
 (0)