+|**Top K Documents** | This parameter is an integer that can be set to 3, 5, 10, or 20, and controls the number of document chunks provided to the large language model for formulating the final response. By default, this is set to 5. The search process can be noisy and sometimes, due to chunking, relevant information may be spread across multiple chunks in the search index. Selecting a top-K number, like 5, ensures that the model can extract relevant information, despite the inherent limitations of search and chunking. However, increasing the number too high can potentially distract the model. Additionally, the maximum number of documents that can be effectively used depends on the version of the model, as each has a different context size and capacity for handling documents. If you find that responses are missing important context, try increasing this parameter. Conversely, if you think the model is providing irrelevant information alongside useful data, consider decreasing it. When experimenting with the [chunk size](#ingestion-parameters), we recommend adjusting the top-K parameter to achieve the best performance. Usually, it is beneficial to change the top-K value in the opposite direction of your chunk size adjustment. For example, if you decrease the chunk size from the default of 1024, you might want to increase the top-K value to 10 or 20. This ensures a similar amount of information is provided to the model, as reducing the chunk size decreases the amount of information in the 5 documents given to the model. This is the `topNDocuments` parameter in the API. |
0 commit comments