Skip to content

Commit f98b65d

Browse files
committed
added grammar fixes
1 parent b22598b commit f98b65d

File tree

1 file changed

+30
-26
lines changed

1 file changed

+30
-26
lines changed

articles/machine-learning/how-to-setup-mlops-github-azure-ml.md

Lines changed: 30 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -144,12 +144,12 @@ Before you can set up an MLOps project with Machine Learning, you need to set up
144144
:::image type="content" source="./media/how-to-setup-mlops-azureml/github-secrets-string.png" alt-text="Screenshot of GitHub Secrets String 1.":::
145145

146146
1. Add each of the following additional GitHub secrets using the corresponding values from the service principal output as the content of the secret:
147-
> **ARM_CLIENT_ID**
148-
> **ARM_CLIENT_SECRET**
149-
> **ARM_SUBSCRIPTION_ID**
150-
> **ARM_TENANT_ID**
147+
- **ARM_CLIENT_ID**
148+
- **ARM_CLIENT_SECRET**
149+
- **ARM_SUBSCRIPTION_ID**
150+
- **ARM_TENANT_ID**
151151

152-
:::image type="content" source="./media/how-to-setup-mlops-azureml/github-secrets-string-2.png" alt-text="Screenshot of GitHub Secrets String 2.":::
152+
:::image type="content" source="./media/how-to-setup-mlops-azureml/github-secrets-string-2.png" alt-text="Screenshot of GitHub Secrets String 2.":::
153153

154154
> [!NOTE]
155155
> This finishes the prerequisite section and the deployment of the solution accelerator can happen accordingly.
@@ -164,29 +164,29 @@ This step deploys the training pipeline to the Machine Learning workspace create
164164
### Configure Machine Learning environment parameters
165165
Go to your repository and select the `config-infra-prod.yml` file in the root. Change the following parameters to your liking, and then **commit** the changes.
166166
167-
This config file uses the namespace and postfix values the names of the artifacts to ensure uniqueness. Update the following section in the config to your liking. Default values and settings in the files are show below:
167+
This config file uses the namespace and postfix values the names of the artifacts to ensure uniqueness. Update the following section in the config to your liking. Default values and settings in the files are show below:
168168
169-
```bash
170-
namespace: mlopslite #Note: A namespace with many characters will cause storage account creation to fail due to storage account names having a limit of 24 characters.
171-
postfix: ao04
172-
location: westus
169+
```bash
170+
namespace: mlopslite #Note: A namespace with many characters will cause storage account creation to fail due to storage account names having a limit of 24 characters.
171+
postfix: ao04
172+
location: westus
173173
174-
environment: prod
175-
enable_aml_computecluster: true
176-
enable_aml_secure_workspace: true
177-
enable_monitoring: false
178-
```
179-
> [!NOTE]
180-
> If you are running a Deep Learning workload such as CV or NLP, ensure your GPU compute is available in your deployment zone.
181-
> The enable_monitoring flag in these files defaults to False. Enabling this flag will add additional elements to the deployment to support Azure ML monitoring based on https://github.com/microsoft/AzureML-Observability. This will include an ADX cluster and increase the deployment time and cost of the MLOps solution.
174+
environment: prod
175+
enable_aml_computecluster: true
176+
enable_aml_secure_workspace: true
177+
enable_monitoring: false
178+
```
179+
> [!NOTE]
180+
> If you are running a Deep Learning workload such as CV or NLP, ensure your GPU compute is available in your deployment zone.
181+
> The enable_monitoring flag in these files defaults to False. Enabling this flag will add additional elements to the deployment to support Azure ML monitoring based on https://github.com/microsoft/AzureML-Observability. This will include an ADX cluster and increase the deployment time and cost of the MLOps solution.
182182
183183
### Deploy Machine Learning infrastructure
184184
185185
1. In your GitHub project repository (ex: taxi-fare-regression), select **Actions**
186186
187187
:::image type="content" source="./media/how-to-setup-mlops-azureml/github-actions.png" alt-text="Screenshot of GitHub actions.":::
188188
189-
This displays the pre-defined GitHub workflows associated with your project. For a classical machine learning project, the available workflows look similar to this:
189+
This displays the pre-defined GitHub workflows associated with your project. For a classical machine learning project, the available workflows look similar to this:
190190
191191
:::image type="content" source="./media/how-to-setup-mlops-azureml/github-workflows.png" alt-text="Screenshot of GitHub workflows.":::
192192
@@ -253,12 +253,12 @@ With the trained model registered in the Machine learning workspace, you are rea
253253

254254
This scenario includes prebuilt workflows for two approaches to deploying a trained model, batch scoring or a deploying a model to an endpoint for real-time scoring. You may run either or both of these workflows to test the performance of the model in your Azure ML workspace.
255255

256-
In your GitHub project repository (ex: taxi-fare-regression), select **Actions**
257-
258-
:::image type="content" source="./media/how-to-setup-mlops-azureml/github-actions.png" alt-text="Screenshot of GitHub actions page.":::
259-
260256
### Online Endpoint
261257

258+
1. In your GitHub project repository (ex: taxi-fare-regression), select **Actions**
259+
260+
:::image type="content" source="./media/how-to-setup-mlops-azureml/github-actions.png" alt-text="Screenshot of GitHub actions page.":::
261+
262262
1. Select the **deploy-online-endpoint-pipeline** from the workflows listed on the left and click **Run workflow** to execute the online endpoint deployment pipeline workflow. The steps in this pipeline will create an online endpoint in your Machine Learning workspace, create a deployment of your model to this endpoint, then allocate traffic to the endpoint.
263263

264264
:::image type="content" source="./media/how-to-setup-mlops-azureml/github-online-endpoint.png" alt-text="Screenshot of GitHub action for online endpoint.":::
@@ -272,14 +272,18 @@ In your GitHub project repository (ex: taxi-fare-regression), select **Actions**
272272
:::image type="content" source="./media/how-to-setup-mlops-azureml/azure-ml-online-endpoint-test.png" alt-text="Screenshot of Machine Learning taxi Online endpoint test.":::
273273

274274
### Batch Endpoint
275-
275+
276+
1. In your GitHub project repository (ex: taxi-fare-regression), select **Actions**
277+
278+
:::image type="content" source="./media/how-to-setup-mlops-azureml/github-actions.png" alt-text="Screenshot of GitHub actions page.":::
279+
276280
1. Select the **deploy-batch-endpoint-pipeline** from the workflows and click **Run workflow** to execute the batch endpoint deployment pipeline workflow. The steps in this pipeline will create a new AmlCompute cluster on which to execute batch scoring, create the batch endpoint in your Machine Learning workspace, then create a deployment of your model to this endpoint.
277281

278-
:::image type="content" source="./media/how-to-setup-mlops-azureml/github-batch-endpoint.png" alt-text="Screenshot of GitHub action for batch endpoint":::
282+
:::image type="content" source="./media/how-to-setup-mlops-azureml/github-batch-endpoint.png" alt-text="Screenshot of GitHub action for batch endpoint":::
279283

280284
2. Once completed, you will find the batch endpoint deployed in the Azure ML workspace and available for testing.
281285

282-
:::image type="content" source="./media/how-to-setup-mlops-azureml/azure-ml-taxi-batch-endpoint.png" alt-text="Screenshot of Machine Learning taxi batch endpoint":::
286+
:::image type="content" source="./media/how-to-setup-mlops-azureml/azure-ml-taxi-batch-endpoint.png" alt-text="Screenshot of Machine Learning taxi batch endpoint":::
283287

284288
## Moving to production
285289

0 commit comments

Comments
 (0)