Skip to content

Commit f9fbbc0

Browse files
committed
main/setup-repo
1 parent 325435a commit f9fbbc0

File tree

3 files changed

+9
-9
lines changed

3 files changed

+9
-9
lines changed

articles/machine-learning/how-to-configure-cli.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -77,18 +77,18 @@ If you have access to multiple Azure subscriptions, you can set your active subs
7777

7878
Optionally, setup common variables in your shell for usage in subsequent commands:
7979

80-
:::code language="azurecli" source="~/azureml-examples-main/setup-repo/azure-github.sh" id="set_variables":::
80+
:::code language="azurecli" source="~/azureml-examples-v2samplesreorg/setup/setup-repo/azure-github.sh" id="set_variables":::
8181

8282
> [!WARNING]
8383
> This uses Bash syntax for setting variables -- adjust as needed for your shell. You can also replace the values in commands below inline rather than using variables.
8484
8585
If it doesn't already exist, you can create the Azure resource group:
8686

87-
:::code language="azurecli" source="~/azureml-examples-main/setup-repo/azure-github.sh" id="az_group_create":::
87+
:::code language="azurecli" source="~/azureml-examples-v2samplesreorg/setup/setup-repo/azure-github.sh" id="az_group_create":::
8888

8989
And create a machine learning workspace:
9090

91-
:::code language="azurecli" source="~/azureml-examples-main/setup-repo/azure-github.sh" id="az_ml_workspace_create":::
91+
:::code language="azurecli" source="~/azureml-examples-v2samplesreorg/setup/setup-repo/azure-github.sh" id="az_ml_workspace_create":::
9292

9393
Machine learning subcommands require the `--workspace/-w` and `--resource-group/-g` parameters. To avoid typing these repeatedly, configure defaults:
9494

articles/machine-learning/how-to-secure-online-endpoint.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -140,9 +140,9 @@ The following diagram shows the overall architecture of this example:
140140

141141
To create the resources, use the following Azure CLI commands. Replace `<UNIQUE_SUFFIX>` with a unique suffix for the resources that are created.
142142

143-
:::code language="azurecli" source="~/azureml-examples-main/setup-repo/azure-github.sh" id="managed_vnet_workspace_suffix":::
143+
:::code language="azurecli" source="~/azureml-examples-v2samplesreorg/setup/setup-repo/azure-github.sh" id="managed_vnet_workspace_suffix":::
144144

145-
:::code language="azurecli" source="~/azureml-examples-main/setup-repo/azure-github.sh" id="managed_vnet_workspace_create":::
145+
:::code language="azurecli" source="~/azureml-examples-v2samplesreorg/setup/setup-repo/azure-github.sh" id="managed_vnet_workspace_create":::
146146

147147
### Create the virtual machine jump box
148148

articles/machine-learning/how-to-train-cli.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ Using `--depth 1` clones only the latest commit to the repository, which reduces
4242

4343
You can create an Azure Machine Learning compute cluster from the command line. For instance, the following commands will create one cluster named `cpu-cluster` and one named `gpu-cluster`.
4444

45-
:::code language="azurecli" source="~/azureml-examples-main/setup-repo/create-compute.sh" id="create_computes":::
45+
:::code language="azurecli" source="~/azureml-examples-v2samplesreorg/setup/setup-repo/create-compute.sh" id="create_computes":::
4646

4747
You are not charged for compute at this point as `cpu-cluster` and `gpu-cluster` will remain at zero nodes until a job is submitted. Learn more about how to [manage and optimize cost for AmlCompute](how-to-manage-optimize-cost.md#use-azure-machine-learning-compute-cluster-amlcompute).
4848

@@ -392,15 +392,15 @@ As an example, you can train a convolutional neural network (CNN) on the CIFAR-1
392392

393393
The CIFAR-10 dataset in `torchvision` expects as input a directory that contains the `cifar-10-batches-py` directory. You can download the zipped source and extract into a local directory:
394394

395-
:::code language="azurecli" source="~/azureml-examples-main/setup-repo/create-datasets.sh" id="download_untar_cifar":::
395+
:::code language="azurecli" source="~/azureml-examples-v2samplesreorg/setup/setup-repo/create-datasets.sh" id="download_untar_cifar":::
396396

397397
Then create an Azure Machine Learning data asset from the local directory, which will be uploaded to the default datastore:
398398

399-
:::code language="azurecli" source="~/azureml-examples-main/setup-repo/create-datasets.sh" id="create_cifar":::
399+
:::code language="azurecli" source="~/azureml-examples-v2samplesreorg/setup/setup-repo/create-datasets.sh" id="create_cifar":::
400400

401401
Optionally, remove the local file and directory:
402402

403-
:::code language="azurecli" source="~/azureml-examples-main/setup-repo/create-datasets.sh" id="cleanup_cifar":::
403+
:::code language="azurecli" source="~/azureml-examples-v2samplesreorg/setup/setup-repo/create-datasets.sh" id="cleanup_cifar":::
404404

405405
Registered data assets can be used as inputs to job using the `path` field for a job input. The format is `azureml:<data_name>:<data_version>`, so for the CIFAR-10 dataset just created, it is `azureml:cifar-10-example:1`. You can optionally use the `azureml:<data_name>@latest` syntax instead if you want to reference the latest version of the data asset. Azure ML will resolve that reference to the explicit version.
406406

0 commit comments

Comments
 (0)