|
91 | 91 | items:
|
92 | 92 | - name: Plan and manage costs
|
93 | 93 | href: concept-plan-manage-cost.md
|
| 94 | + - name: "Designer: no-code ML" |
| 95 | + displayName: studio |
| 96 | + href: concept-designer.md |
| 97 | + - name: Automated ML |
| 98 | + displayName: automl, auto ml |
| 99 | + href: concept-automated-ml.md |
94 | 100 | - name: Workspace
|
95 | 101 | href: concept-workspace.md
|
96 | 102 | - name: Environments
|
97 | 103 | href: concept-environments.md
|
98 |
| - - name: Data ingestion |
99 |
| - href: concept-data-ingestion.md |
100 |
| - - name: Data access |
101 |
| - href: concept-data.md |
| 104 | + - name: Compute instance |
| 105 | + displayName: resource, dsvm, Data Science Virtual Machine |
| 106 | + href: concept-compute-instance.md |
| 107 | + - name: Compute target |
| 108 | + displayName: resource, dsvm, AKS, kubernetes, amlcompute, Data Science Virtual Machine, local, cluster, ACI, container instance, ADB, Databricks, data lake, lake, HDI, HDInsight |
| 109 | + href: concept-compute-target.md |
| 110 | + - name: Data |
| 111 | + items: |
| 112 | + - name: Data access |
| 113 | + href: concept-data.md |
| 114 | + - name: Data ingestion |
| 115 | + href: concept-data-ingestion.md |
| 116 | + - name: Common pitfalls |
| 117 | + displayName: automl, auto ml, risks |
| 118 | + href: concept-manage-ml-pitfalls.md |
102 | 119 | - name: Model training
|
103 | 120 | displayName: run config, estimator, machine learning pipeline, ml pipeline, train model
|
104 | 121 | href: concept-train-machine-learning-model.md
|
| 122 | + - name: Deep learning |
| 123 | + displayName: deep learning vs machine learning, deep learning, vs, versus |
| 124 | + href: concept-deep-learning-vs-machine-learning.md |
105 | 125 | - name: Distributed training
|
106 | 126 | displayName: parallellization, deep learning, deep neural network, dnn
|
107 | 127 | href: concept-distributed-training.md
|
108 | 128 | - name: Model management (MLOps)
|
109 | 129 | displayName: deploy, deployment, publish, production, operationalize, operationalization
|
110 | 130 | href: concept-model-management-and-deployment.md
|
111 |
| - - name: Interpretability |
| 131 | + - name: Model interpretability |
112 | 132 | displayName: explainability
|
113 | 133 | href: how-to-machine-learning-interpretability.md
|
114 |
| - - name: "Designer: no-code ML" |
115 |
| - displayName: studio |
116 |
| - href: concept-designer.md |
117 |
| - - name: Algorithm cheat sheet |
118 |
| - href: /azure/machine-learning/algorithm-cheat-sheet |
119 |
| - - name: How to select algorithms |
120 |
| - href: /azure/machine-learning/how-to-select-algorithms |
121 |
| - - name: Automated ML |
122 |
| - displayName: automl, auto ml |
123 |
| - href: concept-automated-ml.md |
124 |
| - - name: Overfitting & imbalanced data |
125 |
| - displayName: automl, auto ml, risks |
126 |
| - href: concept-manage-ml-pitfalls.md |
127 |
| - - name: Compute instance |
128 |
| - displayName: resource, dsvm, Data Science Virtual Machine |
129 |
| - href: concept-compute-instance.md |
130 |
| - - name: Compute target |
131 |
| - displayName: resource, dsvm, AKS, kubernetes, amlcompute, Data Science Virtual Machine, local, cluster, ACI, container instance, ADB, Databricks, data lake, lake, HDI, HDInsight |
132 |
| - href: concept-compute-target.md |
| 134 | + - name: Model portability (ONNX) |
| 135 | + href: concept-onnx.md |
133 | 136 | - name: ML pipelines
|
134 | 137 | href: concept-ml-pipelines.md
|
135 |
| - - name: ONNX |
136 |
| - href: concept-onnx.md |
137 | 138 | - name: Enterprise readiness & security
|
138 | 139 | items:
|
139 | 140 | - name: Enterprise security
|
|
165 | 166 | href: monitor-azure-machine-learning.md
|
166 | 167 | - name: Event grid integration
|
167 | 168 | href: concept-event-grid-integration.md
|
168 |
| - - name: Deep learning |
169 |
| - displayName: deep learning vs machine learning, deep learning, vs, versus |
170 |
| - href: concept-deep-learning-vs-machine-learning.md |
| 169 | + - name: Algorithms |
| 170 | + items: |
| 171 | + - name: Algorithm cheat sheet |
| 172 | + href: /azure/machine-learning/algorithm-cheat-sheet |
| 173 | + - name: How to select algorithms |
| 174 | + href: /azure/machine-learning/how-to-select-algorithms |
171 | 175 | - name: How-to guides
|
172 | 176 | items:
|
173 | 177 | - name: Create & manage workspaces
|
|
0 commit comments