|
| 1 | +""" |
| 2 | +Instruction Clarity Evaluator - 指令清晰度评估器 |
| 3 | +
|
| 4 | +Based on recent research: |
| 5 | +- IFEval: Instruction Following Evaluation (Google, 2023) |
| 6 | +- Self-Instruct (University of Washington, 2023) |
| 7 | +- Alpaca: A Strong, Replicable Instruction-Following Model (Stanford, 2023) |
| 8 | +
|
| 9 | +评估维度: |
| 10 | +1. Self-Descriptiveness: 指令是否自包含,无需额外上下文 |
| 11 | +2. Consistency: 指令内部是否一致,无矛盾 |
| 12 | +3. Specificity: 指令是否具体明确,避免歧义 |
| 13 | +4. Completeness: 指令是否完整,包含所有必要信息 |
| 14 | +""" |
| 15 | + |
| 16 | +from dingo.io.output.eval_detail import EvalDetail |
| 17 | +from dingo.model import Model |
| 18 | +from dingo.model.llm.base_openai import BaseOpenAI |
| 19 | +from dingo.utils import log |
| 20 | + |
| 21 | + |
| 22 | +@Model.llm_register("LLMInstructionClarity") |
| 23 | +class LLMInstructionClarity(BaseOpenAI): |
| 24 | + """ |
| 25 | + LLM-based instruction clarity evaluator |
| 26 | +
|
| 27 | + 评估指令的清晰度,包括: |
| 28 | + - 自描述性:是否包含足够信息 |
| 29 | + - 一致性:内部是否有矛盾 |
| 30 | + - 具体性:是否明确具体 |
| 31 | + - 完整性:是否包含所有必要信息 |
| 32 | + """ |
| 33 | + |
| 34 | + # Metadata for documentation generation |
| 35 | + _metric_info = { |
| 36 | + "category": "SFT Data Assessment Metrics", |
| 37 | + "quality_dimension": "INSTRUCTION_CLARITY", |
| 38 | + "metric_name": "LLMInstructionClarity", |
| 39 | + "description": "Evaluates instruction clarity across four dimensions: self-descriptiveness, consistency, specificity, and completeness", |
| 40 | + "paper_source": "IFEval (Google, 2023), Self-Instruct (UW, 2023)", |
| 41 | + "evaluation_results": "Returns clarity score (0-10) and detailed analysis" |
| 42 | + } |
| 43 | + |
| 44 | + prompt = """ |
| 45 | +# Role |
| 46 | +You are an expert in evaluating instruction quality for Large Language Model training data. |
| 47 | +
|
| 48 | +# Task |
| 49 | +Evaluate the clarity of the given instruction across four dimensions. |
| 50 | +
|
| 51 | +# Evaluation Dimensions |
| 52 | +
|
| 53 | +## 1. Self-Descriptiveness (自描述性) |
| 54 | +**Definition**: Does the instruction contain sufficient information to be understood without additional context? |
| 55 | +
|
| 56 | +**Scoring**: |
| 57 | +- **High (2.5)**: Complete self-contained instruction with all necessary details |
| 58 | + - Example: "Write a Python function that takes a list of integers and returns the sum of all even numbers. Include docstring and type hints." |
| 59 | +- **Medium (1.5)**: Mostly clear but may need minor assumptions |
| 60 | + - Example: "Write a function to sum even numbers in a list." |
| 61 | +- **Low (0.5)**: Requires significant external context or assumptions |
| 62 | + - Example: "Do that thing with the numbers." |
| 63 | +
|
| 64 | +## 2. Consistency (一致性) |
| 65 | +**Definition**: Are all parts of the instruction aligned without contradictions? |
| 66 | +
|
| 67 | +**Scoring**: |
| 68 | +- **High (2.5)**: Perfectly consistent throughout |
| 69 | + - Example: "Write a formal academic essay on climate change using APA citation style and maintain a professional tone." |
| 70 | +- **Medium (1.5)**: Minor inconsistencies that don't fundamentally conflict |
| 71 | + - Example: "Write a casual blog post but use academic references." |
| 72 | +- **Low (0.5)**: Major contradictions |
| 73 | + - Example: "Write a 500-word essay in under 100 words." |
| 74 | +
|
| 75 | +## 3. Specificity (具体性) |
| 76 | +**Definition**: Is the instruction concrete and unambiguous? |
| 77 | +
|
| 78 | +**Scoring**: |
| 79 | +- **High (2.5)**: Very specific with clear success criteria |
| 80 | + - Example: "Generate exactly 5 creative product names for an eco-friendly water bottle. Each name should be 2-3 words and include at least one nature-related term." |
| 81 | +- **Medium (1.5)**: Somewhat specific but allows interpretation |
| 82 | + - Example: "Generate some creative names for a water bottle." |
| 83 | +- **Low (0.5)**: Vague and ambiguous |
| 84 | + - Example: "Make something cool." |
| 85 | +
|
| 86 | +## 4. Completeness (完整性) |
| 87 | +**Definition**: Does the instruction include all necessary information for task completion? |
| 88 | +
|
| 89 | +**Scoring**: |
| 90 | +- **High (2.5)**: All required elements specified (input, output, constraints, format) |
| 91 | + - Example: "Given a JSON file with user data, extract all email addresses, validate them using regex, and output to a CSV file with columns: name, email, valid_status." |
| 92 | +- **Medium (1.5)**: Most elements present but some details missing |
| 93 | + - Example: "Extract email addresses from a file and validate them." |
| 94 | +- **Low (0.5)**: Critical information missing |
| 95 | + - Example: "Process the data." |
| 96 | +
|
| 97 | +# Scoring System |
| 98 | +- **Total Score**: 0-10 (sum of all four dimensions, each worth 2.5 points) |
| 99 | +- **Threshold**: Default 6.0 (instructions below this score are considered unclear) |
| 100 | +
|
| 101 | +# Output Format |
| 102 | +Return JSON only: |
| 103 | +```json |
| 104 | +{ |
| 105 | + "score": 8.5, |
| 106 | + "dimensions": { |
| 107 | + "self_descriptiveness": 2.5, |
| 108 | + "consistency": 2.0, |
| 109 | + "specificity": 2.0, |
| 110 | + "completeness": 2.0 |
| 111 | + }, |
| 112 | + "issues": [], |
| 113 | + "strengths": ["Clear task definition", "Well-specified output format"], |
| 114 | + "suggestions": ["Could specify tone/style more explicitly"], |
| 115 | + "reason": "High-quality instruction with clear task definition and well-specified constraints. Minor improvement: explicitly specify the desired tone." |
| 116 | +} |
| 117 | +``` |
| 118 | +
|
| 119 | +# Important Rules |
| 120 | +1. Be strict but fair - real-world instructions aren't always perfect |
| 121 | +2. Focus on whether the instruction enables successful task completion |
| 122 | +3. Consider the instruction type (creative tasks may be intentionally open-ended) |
| 123 | +4. Empty or extremely vague instructions should score 0-2 |
| 124 | +5. Professional SFT-quality instructions should score 7+ |
| 125 | +
|
| 126 | +# Examples |
| 127 | +
|
| 128 | +**Example 1 - Excellent Instruction (Score: 9.5)** |
| 129 | +Input: "Write a Python function named `calculate_discount` that takes two parameters: original_price (float) and discount_percentage (float, 0-100). Return the final price after applying the discount, rounded to 2 decimal places. Include input validation to ensure prices are positive and discounts are between 0-100. Add comprehensive docstring with examples." |
| 130 | +
|
| 131 | +Output: |
| 132 | +```json |
| 133 | +{ |
| 134 | + "score": 9.5, |
| 135 | + "dimensions": { |
| 136 | + "self_descriptiveness": 2.5, |
| 137 | + "consistency": 2.5, |
| 138 | + "specificity": 2.5, |
| 139 | + "completeness": 2.0 |
| 140 | + }, |
| 141 | + "issues": [], |
| 142 | + "strengths": [ |
| 143 | + "Specific function name and parameters", |
| 144 | + "Clear input/output specifications", |
| 145 | + "Validation requirements specified", |
| 146 | + "Format requirements (rounding) included" |
| 147 | + ], |
| 148 | + "suggestions": [ |
| 149 | + "Could specify return type for type hints" |
| 150 | + ], |
| 151 | + "reason": "Excellent instruction with comprehensive details. Only minor omission: explicit mention of return type annotation." |
| 152 | +} |
| 153 | +``` |
| 154 | +
|
| 155 | +**Example 2 - Poor Instruction (Score: 2.0)** |
| 156 | +Input: "写个代码" |
| 157 | +
|
| 158 | +Output: |
| 159 | +```json |
| 160 | +{ |
| 161 | + "score": 2.0, |
| 162 | + "dimensions": { |
| 163 | + "self_descriptiveness": 0.5, |
| 164 | + "consistency": 0.5, |
| 165 | + "specificity": 0.5, |
| 166 | + "completeness": 0.5 |
| 167 | + }, |
| 168 | + "issues": [ |
| 169 | + "No programming language specified", |
| 170 | + "No task description", |
| 171 | + "No input/output specification", |
| 172 | + "No context provided" |
| 173 | + ], |
| 174 | + "strengths": [], |
| 175 | + "suggestions": [ |
| 176 | + "Specify programming language", |
| 177 | + "Describe what the code should do", |
| 178 | + "Define expected inputs and outputs", |
| 179 | + "Add any constraints or requirements" |
| 180 | + ], |
| 181 | + "reason": "Extremely vague instruction lacking all essential information. Impossible to determine what code is needed without additional context." |
| 182 | +} |
| 183 | +``` |
| 184 | +
|
| 185 | +**Example 3 - Moderate Instruction (Score: 6.5)** |
| 186 | +Input: "Summarize this article in a few sentences." |
| 187 | +
|
| 188 | +Output: |
| 189 | +```json |
| 190 | +{ |
| 191 | + "score": 6.5, |
| 192 | + "dimensions": { |
| 193 | + "self_descriptiveness": 1.5, |
| 194 | + "consistency": 2.0, |
| 195 | + "specificity": 1.5, |
| 196 | + "completeness": 1.5 |
| 197 | + }, |
| 198 | + "issues": [ |
| 199 | + "'Few sentences' is ambiguous (2? 3? 5?)", |
| 200 | + "No article content provided (assumes context)", |
| 201 | + "No specification of summary style/focus" |
| 202 | + ], |
| 203 | + "strengths": [ |
| 204 | + "Clear task (summarization)", |
| 205 | + "No internal contradictions" |
| 206 | + ], |
| 207 | + "suggestions": [ |
| 208 | + "Specify exact number of sentences (e.g., '3-5 sentences')", |
| 209 | + "Include the article content or reference", |
| 210 | + "Optionally specify summary focus (key findings, main argument, etc.)" |
| 211 | + ], |
| 212 | + "reason": "Decent instruction with clear intent but lacks precision. Needs more specific constraints and assumes article context is available." |
| 213 | +} |
| 214 | +``` |
| 215 | +
|
| 216 | +# Now evaluate this instruction: |
| 217 | +""" |
| 218 | + |
| 219 | + @classmethod |
| 220 | + def process_response(cls, response: str) -> EvalDetail: |
| 221 | + """处理 LLM 响应并生成评估结果""" |
| 222 | + import json |
| 223 | + |
| 224 | + log.info(f"LLM Response: {response}") |
| 225 | + result = EvalDetail(metric=cls.__name__) |
| 226 | + |
| 227 | + try: |
| 228 | + # 解析 JSON 响应 |
| 229 | + # 移除可能的 markdown 代码块标记 |
| 230 | + response = response.strip() |
| 231 | + if response.startswith("```json"): |
| 232 | + response = response[7:] |
| 233 | + if response.startswith("```"): |
| 234 | + response = response[3:] |
| 235 | + if response.endswith("```"): |
| 236 | + response = response[:-3] |
| 237 | + response = response.strip() |
| 238 | + |
| 239 | + parsed = json.loads(response) |
| 240 | + |
| 241 | + # 提取分数和维度信息 |
| 242 | + score = float(parsed.get("score", 0)) |
| 243 | + dimensions = parsed.get("dimensions", {}) |
| 244 | + issues = parsed.get("issues", []) |
| 245 | + strengths = parsed.get("strengths", []) |
| 246 | + suggestions = parsed.get("suggestions", []) |
| 247 | + reason = parsed.get("reason", "") |
| 248 | + |
| 249 | + # 构建详细的 reason |
| 250 | + detailed_reason = f"指令清晰度评分: {score}/10\n\n" |
| 251 | + detailed_reason += "维度得分:\n" |
| 252 | + detailed_reason += f" - 自描述性: {dimensions.get('self_descriptiveness', 0)}/2.5\n" |
| 253 | + detailed_reason += f" - 一致性: {dimensions.get('consistency', 0)}/2.5\n" |
| 254 | + detailed_reason += f" - 具体性: {dimensions.get('specificity', 0)}/2.5\n" |
| 255 | + detailed_reason += f" - 完整性: {dimensions.get('completeness', 0)}/2.5\n\n" |
| 256 | + |
| 257 | + if strengths: |
| 258 | + detailed_reason += "优点:\n" |
| 259 | + for s in strengths: |
| 260 | + detailed_reason += f" ✓ {s}\n" |
| 261 | + detailed_reason += "\n" |
| 262 | + |
| 263 | + if issues: |
| 264 | + detailed_reason += "问题:\n" |
| 265 | + for i in issues: |
| 266 | + detailed_reason += f" ✗ {i}\n" |
| 267 | + detailed_reason += "\n" |
| 268 | + |
| 269 | + if suggestions: |
| 270 | + detailed_reason += "改进建议:\n" |
| 271 | + for s in suggestions: |
| 272 | + detailed_reason += f" → {s}\n" |
| 273 | + detailed_reason += "\n" |
| 274 | + |
| 275 | + detailed_reason += f"总结: {reason}" |
| 276 | + |
| 277 | + # 设置结果 |
| 278 | + result.score = score |
| 279 | + result.reason = [detailed_reason] |
| 280 | + |
| 281 | + # 判断是否通过(默认阈值 6.0) |
| 282 | + threshold = 6.0 |
| 283 | + if hasattr(cls, 'dynamic_config') and cls.dynamic_config.parameters: |
| 284 | + threshold = cls.dynamic_config.parameters.get('threshold', 6.0) |
| 285 | + |
| 286 | + if score >= threshold: |
| 287 | + result.status = False |
| 288 | + result.label = ["QUALITY_GOOD.INSTRUCTION_CLARITY_PASS"] |
| 289 | + else: |
| 290 | + result.status = True |
| 291 | + result.label = ["QUALITY_BAD.INSTRUCTION_CLARITY_FAIL"] |
| 292 | + |
| 293 | + except json.JSONDecodeError as e: |
| 294 | + log.error(f"Failed to parse JSON response: {e}") |
| 295 | + result.status = True |
| 296 | + result.score = 0 |
| 297 | + result.label = ["QUALITY_BAD.INSTRUCTION_CLARITY_ERROR"] |
| 298 | + result.reason = [f"评估失败: JSON 解析错误 - {str(e)}"] |
| 299 | + except Exception as e: |
| 300 | + log.error(f"Error processing response: {e}") |
| 301 | + result.status = True |
| 302 | + result.score = 0 |
| 303 | + result.label = ["QUALITY_BAD.INSTRUCTION_CLARITY_ERROR"] |
| 304 | + result.reason = [f"评估失败: {str(e)}"] |
| 305 | + |
| 306 | + return result |
0 commit comments