|
| 1 | +from dataclasses import dataclass |
| 2 | +from typing import Dict, List, Literal, Optional |
| 3 | + |
| 4 | +from dingo.io import Data |
| 5 | +from dingo.model import Model |
| 6 | +from dingo.model.llm.base_openai import BaseOpenAI |
| 7 | +from dingo.model.modelres import ModelRes |
| 8 | +from dingo.model.prompt.prompt_factcheck import PromptFactCheck |
| 9 | +from dingo.utils.exception import ExceedMaxTokens |
| 10 | + |
| 11 | + |
| 12 | +@dataclass |
| 13 | +class Evidence: |
| 14 | + """验证证据""" |
| 15 | + url: str |
| 16 | + snippet: str |
| 17 | + summary: str |
| 18 | + |
| 19 | + |
| 20 | +@dataclass |
| 21 | +class FactCheckResult: |
| 22 | + """单条声明的验证结果""" |
| 23 | + claim: str |
| 24 | + answer: Literal["true", "false", "unsure"] |
| 25 | + reasoning: str |
| 26 | + supporting_evidence: List[Evidence] |
| 27 | + |
| 28 | + |
| 29 | +@Model.prompt_register(metric_type="QUALITY_BAD_FACTUALITY", group=["factuality"]) |
| 30 | +@Model.llm_register("LLMFactCheckPublic") |
| 31 | +class LLMFactCheckPublic(BaseOpenAI): |
| 32 | + """公开事实性评估器 - 基于 GPT-5 System Card 的两阶段评估""" |
| 33 | + |
| 34 | + _metric_info = { |
| 35 | + "category": "Factuality Assessment", |
| 36 | + "quality_dimension": "FACTUAL_CORRECTNESS", |
| 37 | + "metric_name": "LLMFactCheckPublic", |
| 38 | + "description": "Two-stage factuality evaluation pipeline from GPT-5", |
| 39 | + "paper_title": "GPT-5 System Card", |
| 40 | + "paper_url": "https://cdn.openai.com/pdf/8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf", |
| 41 | + "paper_authors": "OpenAI" |
| 42 | + } |
| 43 | + |
| 44 | + prompt = PromptFactCheck |
| 45 | + threshold = 0.8 |
| 46 | + batch_size = 10 # 默认批处理大小 |
| 47 | + web_enabled = True # 默认启用网络搜索 |
| 48 | + |
| 49 | + @classmethod |
| 50 | + def eval(cls, input_data: Data) -> ModelRes: |
| 51 | + """执行两阶段评估""" |
| 52 | + try: |
| 53 | + # 0. 初始化 client |
| 54 | + if cls.client is None: |
| 55 | + cls.create_client() |
| 56 | + |
| 57 | + # 1. 提取声明 |
| 58 | + claims = cls._extract_claims(input_data.prompt, input_data.content) |
| 59 | + if not claims: |
| 60 | + return ModelRes( |
| 61 | + score=0.0, |
| 62 | + threshold=cls.threshold, |
| 63 | + reason=["No factual claims found"], |
| 64 | + raw_resp={"claims": [], "results": []} |
| 65 | + ) |
| 66 | + |
| 67 | + # 2. 分批验证 |
| 68 | + all_results = [] |
| 69 | + for i in range(0, len(claims), cls.batch_size): |
| 70 | + batch = claims[i:i + cls.batch_size] |
| 71 | + results = cls._verify_claims(input_data.prompt, input_data.content, batch) |
| 72 | + all_results.extend(results) |
| 73 | + |
| 74 | + # 3. 计算指标 |
| 75 | + metrics = cls._calculate_metrics(all_results) |
| 76 | + |
| 77 | + # 4. 设置评估结果 |
| 78 | + result = ModelRes( |
| 79 | + score=metrics["factual_ratio"], |
| 80 | + threshold=cls.threshold, |
| 81 | + reason=[cls._format_reason(metrics)], |
| 82 | + raw_resp={ |
| 83 | + "claims": claims, |
| 84 | + "results": all_results, |
| 85 | + "metrics": metrics |
| 86 | + } |
| 87 | + ) |
| 88 | + |
| 89 | + # 5. 根据分数设置状态 |
| 90 | + if metrics["factual_ratio"] < cls.threshold: |
| 91 | + result.error_status = True |
| 92 | + result.type = "QUALITY_BAD_FACTUALITY" |
| 93 | + result.name = "FACTUALITY_CHECK_FAILED" |
| 94 | + else: |
| 95 | + result.type = "QUALITY_GOOD" |
| 96 | + result.name = "FACTUALITY_CHECK_PASSED" |
| 97 | + |
| 98 | + return result |
| 99 | + |
| 100 | + except Exception as e: |
| 101 | + return ModelRes( |
| 102 | + score=0.0, |
| 103 | + threshold=cls.threshold, |
| 104 | + reason=[f"Evaluation failed: {str(e)}"], |
| 105 | + raw_resp={"error": str(e)} |
| 106 | + ) |
| 107 | + |
| 108 | + @classmethod |
| 109 | + def _extract_claims(cls, prompt: str, response: str) -> List[str]: |
| 110 | + """提取事实性声明""" |
| 111 | + messages = [ |
| 112 | + {"role": "user", "content": (PromptFactCheck.CLAIM_LISTING + |
| 113 | + (PromptFactCheck.CLAIM_LISTING_NO_WEB if not cls.web_enabled else "")).format( |
| 114 | + prompt=prompt, |
| 115 | + response=response |
| 116 | + )} |
| 117 | + ] |
| 118 | + result = cls.send_messages(messages) |
| 119 | + try: |
| 120 | + claims = cls._parse_json_list(result) |
| 121 | + return [c for c in claims if c.strip()] # 过滤空声明 |
| 122 | + except Exception as e: |
| 123 | + raise ValueError(f"Failed to parse claims: {str(e)}") |
| 124 | + |
| 125 | + @classmethod |
| 126 | + def _verify_claims(cls, |
| 127 | + prompt: str, |
| 128 | + response: str, |
| 129 | + claims: List[str]) -> List[FactCheckResult]: |
| 130 | + """验证一批声明""" |
| 131 | + messages = [ |
| 132 | + {"role": "user", "content": (PromptFactCheck.FACT_CHECKING + |
| 133 | + (PromptFactCheck.FACT_CHECKING_NO_WEB if not cls.web_enabled else "")).format( |
| 134 | + prompt=prompt, |
| 135 | + response=response, |
| 136 | + claims=claims |
| 137 | + )} |
| 138 | + ] |
| 139 | + result = cls.send_messages(messages) |
| 140 | + try: |
| 141 | + return cls._parse_check_results(result) |
| 142 | + except Exception as e: |
| 143 | + raise ValueError(f"Failed to parse check results: {str(e)}") |
| 144 | + |
| 145 | + @classmethod |
| 146 | + def _calculate_metrics(cls, results: List[FactCheckResult]) -> Dict: |
| 147 | + """计算评估指标""" |
| 148 | + total = len(results) |
| 149 | + if total == 0: |
| 150 | + return { |
| 151 | + "factual_ratio": 0.0, |
| 152 | + "true_count": 0, |
| 153 | + "false_count": 0, |
| 154 | + "unsure_count": 0, |
| 155 | + "total_claims": 0 |
| 156 | + } |
| 157 | + |
| 158 | + counts = { |
| 159 | + "true": sum(1 for r in results if r.answer == "true"), |
| 160 | + "false": sum(1 for r in results if r.answer == "false"), |
| 161 | + "unsure": sum(1 for r in results if r.answer == "unsure") |
| 162 | + } |
| 163 | + |
| 164 | + return { |
| 165 | + "factual_ratio": counts["true"] / total, |
| 166 | + "true_count": counts["true"], |
| 167 | + "false_count": counts["false"], |
| 168 | + "unsure_count": counts["unsure"], |
| 169 | + "total_claims": total |
| 170 | + } |
| 171 | + |
| 172 | + @classmethod |
| 173 | + def _format_reason(cls, metrics: Dict) -> str: |
| 174 | + """格式化评估原因""" |
| 175 | + return ( |
| 176 | + f"Found {metrics['total_claims']} claims: " |
| 177 | + f"{metrics['true_count']} true, " |
| 178 | + f"{metrics['false_count']} false, " |
| 179 | + f"{metrics['unsure_count']} unsure. " |
| 180 | + f"Factual ratio: {metrics['factual_ratio']:.2%}" |
| 181 | + ) |
| 182 | + |
| 183 | + @classmethod |
| 184 | + def _parse_json_list(cls, text: str) -> List[str]: |
| 185 | + """解析 JSON 列表""" |
| 186 | + import json |
| 187 | + try: |
| 188 | + # 提取 JSON 部分 |
| 189 | + start = text.find("[") |
| 190 | + end = text.rfind("]") + 1 |
| 191 | + if start == -1 or end == 0: |
| 192 | + raise ValueError("No JSON list found") |
| 193 | + json_str = text[start:end] |
| 194 | + return json.loads(json_str) |
| 195 | + except Exception as e: |
| 196 | + raise ValueError(f"Invalid JSON format: {str(e)}") |
| 197 | + |
| 198 | + @classmethod |
| 199 | + def _parse_check_results(cls, text: str) -> List[FactCheckResult]: |
| 200 | + """解析验证结果""" |
| 201 | + import json |
| 202 | + try: |
| 203 | + # 提取 JSON 部分 |
| 204 | + start = text.find("[") |
| 205 | + end = text.rfind("]") + 1 |
| 206 | + if start == -1 or end == 0: |
| 207 | + raise ValueError("No JSON results found") |
| 208 | + json_str = text[start:end] |
| 209 | + data = json.loads(json_str) |
| 210 | + |
| 211 | + results = [] |
| 212 | + for item in data: |
| 213 | + evidence_list = [ |
| 214 | + Evidence(**e) for e in item["supporting_evidence"] |
| 215 | + ] |
| 216 | + results.append(FactCheckResult( |
| 217 | + claim=item["claim"], |
| 218 | + answer=item["answer"], |
| 219 | + reasoning=item["reasoning"], |
| 220 | + supporting_evidence=evidence_list |
| 221 | + )) |
| 222 | + return results |
| 223 | + except Exception as e: |
| 224 | + raise ValueError(f"Invalid results format: {str(e)}") |
| 225 | + |
| 226 | + @classmethod |
| 227 | + def send_messages(cls, messages: List) -> str: |
| 228 | + """重写发送消息方法,避免使用 models.list()""" |
| 229 | + if not cls.dynamic_config.model: |
| 230 | + raise ValueError("model name must be specified") |
| 231 | + |
| 232 | + params = cls.dynamic_config.parameters or {} |
| 233 | + cls.validate_config(params) |
| 234 | + |
| 235 | + completions = cls.client.chat.completions.create( |
| 236 | + model=cls.dynamic_config.model, |
| 237 | + messages=messages, |
| 238 | + temperature=params.get("temperature", 0.3), |
| 239 | + top_p=params.get("top_p", 1), |
| 240 | + max_tokens=params.get("max_tokens", 4000), |
| 241 | + presence_penalty=params.get("presence_penalty", 0), |
| 242 | + frequency_penalty=params.get("frequency_penalty", 0), |
| 243 | + ) |
| 244 | + |
| 245 | + if completions.choices[0].finish_reason == "length": |
| 246 | + raise ExceedMaxTokens( |
| 247 | + f"Exceed max tokens: {params.get('max_tokens', 4000)}" |
| 248 | + ) |
| 249 | + |
| 250 | + return str(completions.choices[0].message.content) |
0 commit comments