Skip to content

Commit e69a571

Browse files
authored
Merge branch 'dev' into dev_1209
2 parents 616c62e + 1a66e46 commit e69a571

File tree

4 files changed

+15
-10
lines changed

4 files changed

+15
-10
lines changed

dingo/model/llm/rag/llm_rag_context_precision.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -254,7 +254,7 @@ def process_response(cls, responses: List[str]) -> ModelRes:
254254
result = ModelRes()
255255
result.score = score
256256

257-
# 根据分数判断是否通过(默认阈值5,满分10分)
257+
# 根据分数判断是否通过,默认阈值为5
258258
threshold = 5
259259
if hasattr(cls, 'dynamic_config') and cls.dynamic_config.parameters:
260260
threshold = cls.dynamic_config.parameters.get('threshold', 5)

dingo/model/llm/rag/llm_rag_context_recall.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -49,6 +49,7 @@ class LLMRAGContextRecall(BaseOpenAI):
4949

5050
prompt = """上下文召回评估提示词,用于分类陈述归因"""
5151

52+
@staticmethod
5253
def context_recall_prompt(question: str, context: str, answer: str) -> str:
5354
"""
5455
生成上下文召回评估的提示词
@@ -200,7 +201,7 @@ def process_response(cls, response: str) -> ModelRes:
200201
result = ModelRes()
201202
result.score = score
202203

203-
# 根据分数判断是否通过(默认阈值5,满分10分)
204+
# 根据分数判断是否通过,默认阈值为5
204205
threshold = 5
205206
if hasattr(cls, 'dynamic_config') and cls.dynamic_config.parameters:
206207
threshold = cls.dynamic_config.parameters.get('threshold', 5)

dingo/model/llm/rag/llm_rag_context_relevancy.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,6 +45,7 @@ class LLMRAGContextRelevancy(BaseOpenAI):
4545
"source_frameworks": "Ragas + DeepEval + TruLens"
4646
}
4747

48+
@staticmethod
4849
def context_relevance_judge1_prompt(query: str, context: str) -> str:
4950
"""
5051
First judge template for context relevance evaluation (Chinese version).
@@ -80,6 +81,7 @@ def context_relevance_judge1_prompt(query: str, context: str) -> str:
8081
请不要尝试解释。
8182
分析上下文和问题后,相关性分数为 """
8283

84+
@staticmethod
8385
def context_relevance_judge2_prompt(query: str, context: str) -> str:
8486
"""
8587
Second judge template for context relevance evaluation (Chinese version).
@@ -200,7 +202,7 @@ def process_response(cls, response: str) -> ModelRes:
200202
result = ModelRes()
201203
result.score = score
202204

203-
# 根据分数判断是否通过(默认阈值5,满分10分)
205+
# 根据分数判断是否通过,默认阈值为5
204206
threshold = 5
205207
if hasattr(cls, 'dynamic_config') and cls.dynamic_config.parameters:
206208
threshold = cls.dynamic_config.parameters.get('threshold', 5)

dingo/model/llm/rag/llm_rag_faithfulness.py

Lines changed: 9 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -43,6 +43,7 @@ class LLMRAGFaithfulness(BaseOpenAI):
4343
"source_frameworks": "Ragas + DeepEval"
4444
}
4545

46+
@staticmethod
4647
def statement_generator_prompt(question: str, answer: str) -> str:
4748
"""
4849
Prompt to generate statements from answer (Chinese version).
@@ -67,18 +68,19 @@ def statement_generator_prompt(question: str, answer: str) -> str:
6768
6869
请以JSON格式返回结果,格式如下:
6970
```json
70-
{
71+
{{
7172
"statements": [
7273
"陈述1",
7374
"陈述2",
7475
"陈述3"
7576
]
76-
}
77+
}}
7778
```
7879
7980
请不要输出其他内容,只返回JSON格式的结果。
8081
"""
8182

83+
@staticmethod
8284
def faithfulness_judge_prompt(context: str, statements: List[str]) -> str:
8385
"""
8486
Prompt to judge faithfulness of statements (Chinese version).
@@ -103,15 +105,15 @@ def faithfulness_judge_prompt(context: str, statements: List[str]) -> str:
103105
104106
请以JSON格式返回结果,格式如下:
105107
```json
106-
{
108+
{{
107109
"statements": [
108-
{
110+
{{
109111
"statement": "原始陈述,一字不差",
110112
"reason": "判断理由",
111113
"verdict": 0或1
112-
}
114+
}}
113115
]
114-
}
116+
}}
115117
```
116118
117119
请不要输出其他内容,只返回JSON格式的结果。
@@ -284,7 +286,7 @@ def process_response(cls, response: str) -> ModelRes:
284286
result = ModelRes()
285287
result.score = score
286288

287-
# 根据分数判断是否通过(默认阈值5,满分10分)
289+
# 根据分数判断是否通过,默认阈值为5
288290
threshold = 5
289291
if hasattr(cls, 'dynamic_config') and cls.dynamic_config.parameters:
290292
threshold = cls.dynamic_config.parameters.get('threshold', 5)

0 commit comments

Comments
 (0)