You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+2-2Lines changed: 2 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -119,7 +119,7 @@ For advanced usage, see our [training docs](https://minish.ai/packages/model2vec
119
119
120
120
-**23/05/2025**: We released [potion-multilingual-128M](https://huggingface.co/minishlab/potion-multilingual-128M), a multilingual model trained on 101 languages. It is the best performing static embedding model for multilingual tasks, and is capable of generating embeddings for any text in any language. The results can be found in our [results](results/README.md#mmteb-results-multilingual) section.
121
121
122
-
-**01/05/2025**: We released backend support for `BPE` and `Unigram` tokenizers, along with quantization and dimensionality reduction. New Model2Vec models are now 50% of the original models, and can be quantized to int8 to be 25% of the size, without loss of performance.
122
+
-**01/05/2025**: We released backend support for `BPE` and `Unigram` tokenizers, along with quantization and dimensionality reduction. New Model2Vec models are now 50% of the original models size, and can be quantized to int8 to be 25% of the size, without loss of performance.
123
123
124
124
-**12/02/2025**: We released **Model2Vec training**, allowing you to fine-tune your own classification models on top of Model2Vec models. Find out more in our [training documentation](https://github.com/MinishLab/model2vec/blob/main/model2vec/train/README.md) and [results](results/README.md#training-results).
125
125
@@ -135,7 +135,7 @@ For advanced usage, see our [training docs](https://minish.ai/packages/model2vec
135
135
-**Lightning-fast Inference**: up to 500 times faster on CPU than the original model.
136
136
-**Fast, Dataset-free Distillation**: distill your own model in 30 seconds on a CPU, without a dataset.
137
137
-**Fine-tuning**: fine-tune your own classification models on top of Model2Vec models.
138
-
-**Integrated in many popular libraries**: Model2Vec is integrated direclty into popular libraries such as [Sentence Transformers](https://github.com/UKPLab/sentence-transformers) and [LangChain](https://github.com/langchain-ai/langchain). For more information, see our [integrations documentation](https://github.com/MinishLab/model2vec/blob/main/docs/integrations.md).
138
+
-**Integrated in many popular libraries**: Model2Vec is integrated direclty into popular libraries such as [Sentence Transformers](https://github.com/UKPLab/sentence-transformers) and [LangChain](https://github.com/langchain-ai/langchain). For more information, see our [integrations documentation](https://minish.ai/packages/model2vec/integrations).
139
139
-**Tightly integrated with HuggingFace hub**: easily share and load models from the HuggingFace hub, using the familiar `from_pretrained` and `push_to_hub`. Our own models can be found [here](https://huggingface.co/minishlab).
0 commit comments