@@ -35,7 +35,7 @@ def __init__(
3535 :param vectors: The vectors to use.
3636 :param tokenizer: The Transformers tokenizer to use.
3737 :param config: Any metadata config.
38- :param normalize: Whether to normalize.
38+ :param normalize: Whether to normalize the embeddings .
3939 :param base_model_name: The used base model name. Used for creating a model card.
4040 :param language: The language of the model. Used for creating a model card.
4141 :raises: ValueError if the number of tokens does not match the number of vectors.
@@ -149,6 +149,7 @@ def from_pretrained(
149149 cls : type [StaticModel ],
150150 path : PathLike ,
151151 token : str | None = None ,
152+ normalize : bool | None = None ,
152153 ) -> StaticModel :
153154 """
154155 Load a StaticModel from a local path or huggingface hub path.
@@ -157,21 +158,28 @@ def from_pretrained(
157158
158159 :param path: The path to load your static model from.
159160 :param token: The huggingface token to use.
161+ :param normalize: Whether to normalize the embeddings.
160162 :return: A StaticModel
161163 """
162164 from model2vec .hf_utils import load_pretrained
163165
164166 embeddings , tokenizer , config , metadata = load_pretrained (path , token = token , from_sentence_transformers = False )
165167
166168 return cls (
167- embeddings , tokenizer , config , base_model_name = metadata .get ("base_model" ), language = metadata .get ("language" )
169+ embeddings ,
170+ tokenizer ,
171+ config ,
172+ normalize = normalize ,
173+ base_model_name = metadata .get ("base_model" ),
174+ language = metadata .get ("language" ),
168175 )
169176
170177 @classmethod
171178 def from_sentence_transformers (
172179 cls : type [StaticModel ],
173180 path : PathLike ,
174181 token : str | None = None ,
182+ normalize : bool | None = None ,
175183 ) -> StaticModel :
176184 """
177185 Load a StaticModel trained with sentence transformers from a local path or huggingface hub path.
@@ -180,13 +188,14 @@ def from_sentence_transformers(
180188
181189 :param path: The path to load your static model from.
182190 :param token: The huggingface token to use.
191+ :param normalize: Whether to normalize the embeddings.
183192 :return: A StaticModel
184193 """
185194 from model2vec .hf_utils import load_pretrained
186195
187196 embeddings , tokenizer , config , _ = load_pretrained (path , token = token , from_sentence_transformers = True )
188197
189- return cls (embeddings , tokenizer , config , base_model_name = None , language = None )
198+ return cls (embeddings , tokenizer , config , normalize = normalize , base_model_name = None , language = None )
190199
191200 def encode_as_sequence (
192201 self ,
0 commit comments