|
| 1 | +import functools |
| 2 | +from typing import List, Optional, Tuple, Union |
| 3 | + |
| 4 | +import torch |
| 5 | +import torch.nn.functional as F |
| 6 | +from loguru import logger |
| 7 | + |
| 8 | +try: |
| 9 | + from llava.model.llava_arch import LlavaMetaForCausalLM |
| 10 | +except ModuleNotFoundError: |
| 11 | + logger.info('LlavaMetaForCausalLM not found, if need, please install llava first.') |
| 12 | +from transformers.cache_utils import Cache, DynamicCache |
| 13 | + |
| 14 | +from llmc.utils.registry_factory import TOKEN_REDUCTION_REGISTRY |
| 15 | + |
| 16 | +from .token_reduction_module import TokenReductionModule |
| 17 | +from .utils import prefill_wrapper |
| 18 | + |
| 19 | + |
| 20 | +def dycole_ttm(image_feature, pruning_paras): |
| 21 | + bs, num_tokens_per_frame, _ = image_feature.shape |
| 22 | + image_feature = image_feature.flatten(0, 1) |
| 23 | + # Split frames into tokens |
| 24 | + num_frames = image_feature.shape[0] // num_tokens_per_frame |
| 25 | + merging_ratio = 1 - pruning_paras['merging_ratio'] |
| 26 | + # Calculate similarities between adjacent even frames |
| 27 | + similarities = [] |
| 28 | + for i in range(0, num_frames - 1, 2): |
| 29 | + # Get tokens for adjacent frames |
| 30 | + frame1_tokens = image_feature[ |
| 31 | + i * num_tokens_per_frame: (i + 1) * num_tokens_per_frame |
| 32 | + ] |
| 33 | + frame2_tokens = image_feature[ |
| 34 | + (i + 1) * num_tokens_per_frame: (i + 2) * num_tokens_per_frame |
| 35 | + ] |
| 36 | + |
| 37 | + # Calculate cosine similarity between normalized tokens |
| 38 | + frame1_norm = torch.nn.functional.normalize(frame1_tokens, p=2, dim=1) |
| 39 | + frame2_norm = torch.nn.functional.normalize(frame2_tokens, p=2, dim=1) |
| 40 | + similarity = torch.nn.functional.cosine_similarity( |
| 41 | + frame1_norm, frame2_norm, dim=1 |
| 42 | + ) |
| 43 | + similarities.append(similarity) |
| 44 | + |
| 45 | + similarities = torch.stack( |
| 46 | + [torch.tensor(similarity) for similarity in similarities] |
| 47 | + ) |
| 48 | + |
| 49 | + # Process even frames |
| 50 | + modified_image_feature = [] |
| 51 | + for i in range(0, num_frames - 1, 2): |
| 52 | + frame1_tokens = image_feature[ |
| 53 | + i * num_tokens_per_frame: (i + 1) * num_tokens_per_frame |
| 54 | + ] |
| 55 | + frame2_tokens = image_feature[ |
| 56 | + (i + 1) * num_tokens_per_frame: (i + 2) * num_tokens_per_frame |
| 57 | + ] |
| 58 | + |
| 59 | + avg_similarity = similarities[i // 2] |
| 60 | + num_tokens_to_keep = int(merging_ratio * num_tokens_per_frame) |
| 61 | + tokens_to_keep = avg_similarity.topk(num_tokens_to_keep, largest=False).indices |
| 62 | + |
| 63 | + modified_image_feature.append(frame1_tokens) |
| 64 | + modified_image_feature.append(frame2_tokens[tokens_to_keep]) |
| 65 | + |
| 66 | + # Process odd frames |
| 67 | + odd_similarities = [] |
| 68 | + for i in range(0, num_frames - 4, 4): |
| 69 | + frame1_tokens = image_feature[ |
| 70 | + i * num_tokens_per_frame: (i + 1) * num_tokens_per_frame |
| 71 | + ] |
| 72 | + frame2_tokens = image_feature[ |
| 73 | + (i + 2) * num_tokens_per_frame: (i + 3) * num_tokens_per_frame |
| 74 | + ] |
| 75 | + |
| 76 | + similarity = torch.nn.functional.cosine_similarity( |
| 77 | + frame1_tokens, frame2_tokens, dim=1 |
| 78 | + ) |
| 79 | + odd_similarities.append(similarity) |
| 80 | + |
| 81 | + odd_similarities = torch.stack( |
| 82 | + [torch.tensor(similarity) for similarity in odd_similarities] |
| 83 | + ) |
| 84 | + |
| 85 | + for i in range(0, num_frames - 4, 4): |
| 86 | + frame1_tokens = image_feature[ |
| 87 | + i * num_tokens_per_frame: (i + 1) * num_tokens_per_frame |
| 88 | + ] |
| 89 | + frame2_tokens = image_feature[ |
| 90 | + (i + 2) * num_tokens_per_frame: (i + 3) * num_tokens_per_frame |
| 91 | + ] |
| 92 | + |
| 93 | + avg_similarity = odd_similarities[i // 4] |
| 94 | + num_tokens_to_keep = int(merging_ratio * num_tokens_per_frame) |
| 95 | + tokens_to_keep = avg_similarity.topk(num_tokens_to_keep, largest=False).indices |
| 96 | + |
| 97 | + modified_image_feature[i] = frame1_tokens |
| 98 | + modified_image_feature[i + 2] = frame2_tokens[tokens_to_keep] |
| 99 | + |
| 100 | + # Combine all tokens |
| 101 | + combined_tokens = torch.cat(modified_image_feature, dim=0).unsqueeze(0) |
| 102 | + return combined_tokens |
| 103 | + |
| 104 | + |
| 105 | +def add_dycole_ttm_to_get_2dPool(model, post_hook_fn, pruning_paras): |
| 106 | + original_fn = model.get_2dPool |
| 107 | + |
| 108 | + def wrapped_fn(*args, **kwargs): |
| 109 | + result = original_fn(*args, **kwargs) |
| 110 | + return post_hook_fn(result, pruning_paras) |
| 111 | + |
| 112 | + model.get_2dPool = wrapped_fn |
| 113 | + |
| 114 | + |
| 115 | +@TOKEN_REDUCTION_REGISTRY.register('DyCoke') |
| 116 | +class DyCoke(TokenReductionModule): |
| 117 | + def __init__(self, config, model, blocks): |
| 118 | + super().__init__(config, model, blocks) |
| 119 | + self.add_sparse_config() |
| 120 | + self.register_reduction_modules() |
| 121 | + |
| 122 | + def add_sparse_config(self): |
| 123 | + self.special_config['different_token_idxs'] = [] |
| 124 | + self.dycoke_layer_idx = self.special_config['dycoke_layer_idx'] |
| 125 | + self.model.model.pruning_paras = self.special_config |
| 126 | + |
| 127 | + def register_reduction_modules(self): |
| 128 | + |
| 129 | + if isinstance(self.model.model, LlavaMetaForCausalLM): |
| 130 | + add_dycole_ttm_to_get_2dPool( |
| 131 | + self.model.model, dycole_ttm, self.model.model.pruning_paras |
| 132 | + ) |
0 commit comments