|
| 1 | +import functools |
| 2 | +from functools import wraps |
| 3 | +from types import MethodType |
| 4 | + |
| 5 | +import torch |
| 6 | + |
| 7 | +from llmc.utils.registry_factory import TOKEN_REDUCTION_REGISTRY |
| 8 | + |
| 9 | +from .token_reduction_module import TokenReductionModule |
| 10 | +from .utils import prefill_wrapper |
| 11 | + |
| 12 | + |
| 13 | +def pairwise_cosine_similarity(matrix): |
| 14 | + norm_matrix = matrix / matrix.norm(dim=1, keepdim=True) |
| 15 | + cosine_similarity = torch.mm(norm_matrix, norm_matrix.t()) |
| 16 | + return cosine_similarity |
| 17 | + |
| 18 | + |
| 19 | +def divprune( |
| 20 | + visual_feature_vectors, |
| 21 | + image_feature_length, |
| 22 | + cosine_matrix=None, |
| 23 | + threshold_ratio=0.1, |
| 24 | +): |
| 25 | + threshold_terms = int(round(threshold_ratio * image_feature_length)) |
| 26 | + if cosine_matrix is None: |
| 27 | + cosine_matrix = 1.0 - (pairwise_cosine_similarity(visual_feature_vectors)) |
| 28 | + |
| 29 | + s = torch.empty( |
| 30 | + threshold_terms, dtype=torch.long, device=visual_feature_vectors.device |
| 31 | + ) |
| 32 | + for i in range(threshold_terms): |
| 33 | + if i == 0: |
| 34 | + m2 = cosine_matrix |
| 35 | + else: |
| 36 | + m2 = torch.index_select( |
| 37 | + cosine_matrix, |
| 38 | + 0, |
| 39 | + torch.index_select( |
| 40 | + s, 0, torch.arange(0, i, device=cosine_matrix.device) |
| 41 | + ), |
| 42 | + ) |
| 43 | + |
| 44 | + if i == 0: |
| 45 | + scores = torch.topk(m2, 2, dim=0, largest=False).values[ |
| 46 | + 1, : |
| 47 | + ] # for distance |
| 48 | + else: |
| 49 | + scores = torch.min(m2, dim=0).values # for distance |
| 50 | + |
| 51 | + phrase_to_add_idx = torch.argmax(scores) |
| 52 | + s[i] = phrase_to_add_idx |
| 53 | + return s, cosine_matrix |
| 54 | + |
| 55 | + |
| 56 | +def divprune_post_hook( |
| 57 | + input_ids, |
| 58 | + position_ids, |
| 59 | + attention_mask, |
| 60 | + past_key_values, |
| 61 | + inputs_embeds, |
| 62 | + labels, |
| 63 | + pruning_paras=None, |
| 64 | +): |
| 65 | + rate = pruning_paras['rate'] |
| 66 | + SYS_TOKEN_LEN = pruning_paras['image_token_start_index'] |
| 67 | + img_feature_len = pruning_paras['image_token_length'] |
| 68 | + device = inputs_embeds.device |
| 69 | + visual_tokens = inputs_embeds[0][SYS_TOKEN_LEN: SYS_TOKEN_LEN + img_feature_len] |
| 70 | + selected_visual_tokens, cosine_matrix = divprune( |
| 71 | + visual_tokens, img_feature_len, None, threshold_ratio=rate |
| 72 | + ) |
| 73 | + |
| 74 | + selected_visual_tokens += SYS_TOKEN_LEN |
| 75 | + keep_indexs = torch.cat( |
| 76 | + ( |
| 77 | + torch.arange(SYS_TOKEN_LEN, device=device), |
| 78 | + selected_visual_tokens, |
| 79 | + torch.arange( |
| 80 | + SYS_TOKEN_LEN + img_feature_len, inputs_embeds.shape[1], device=device |
| 81 | + ), |
| 82 | + ) |
| 83 | + ) |
| 84 | + keep_indexs = keep_indexs.sort().values |
| 85 | + |
| 86 | + inputs_embeds = inputs_embeds[:, keep_indexs] |
| 87 | + if position_ids is not None: |
| 88 | + position_ids = position_ids[:, keep_indexs, :] |
| 89 | + if attention_mask is not None: |
| 90 | + attention_mask = attention_mask[:, keep_indexs] |
| 91 | + |
| 92 | + return ( |
| 93 | + input_ids, |
| 94 | + position_ids, |
| 95 | + attention_mask, |
| 96 | + past_key_values, |
| 97 | + inputs_embeds, |
| 98 | + labels, |
| 99 | + ) |
| 100 | + |
| 101 | + |
| 102 | +@TOKEN_REDUCTION_REGISTRY.register('DivPrune') |
| 103 | +class DivPrune(TokenReductionModule): |
| 104 | + def __init__(self, config, model, blocks): |
| 105 | + super().__init__(config, model, blocks) |
| 106 | + self.add_sparse_config() |
| 107 | + self.register_reduction_modules() |
| 108 | + |
| 109 | + def add_sparse_config(self): |
| 110 | + self.special_config['image_token_length'] = self.model.pruning_config[ |
| 111 | + 'image_token_length' |
| 112 | + ] |
| 113 | + |
| 114 | + self.pruning_paras = self.special_config |
| 115 | + |
| 116 | + def register_reduction_modules(self): |
| 117 | + |
| 118 | + def input_hook_llava(fn, pruning_paras): |
| 119 | + @wraps(fn) |
| 120 | + def wrapper(self, *args, **kwargs): |
| 121 | + if len(args) == 0: |
| 122 | + return fn(*args, **kwargs) |
| 123 | + input_args = args[0] |
| 124 | + if hasattr(input_args[0], 'shape') and input_args[0].shape[0] == 1: |
| 125 | + return fn(*args, **kwargs) |
| 126 | + |
| 127 | + input_ids = args[0] |
| 128 | + attention_mask = args[2] |
| 129 | + token_indices = input_ids[0][attention_mask[0]] == IMAGE_TOKEN_INDEX |
| 130 | + pruning_paras['image_token_start_index'] = torch.where(token_indices)[ |
| 131 | + 0 |
| 132 | + ].item() |
| 133 | + |
| 134 | + outputs = fn(*args, **kwargs) |
| 135 | + |
| 136 | + return divprune_post_hook(*outputs, pruning_paras=pruning_paras) |
| 137 | + |
| 138 | + return wrapper |
| 139 | + |
| 140 | + if self.model.__class__.__name__ == 'Llava': |
| 141 | + from llava.constants import IMAGE_TOKEN_INDEX |
| 142 | + |
| 143 | + hook_fn = input_hook_llava( |
| 144 | + self.model.vlm_model.prepare_inputs_labels_for_multimodal, |
| 145 | + self.pruning_paras, |
| 146 | + ) |
| 147 | + self.model.vlm_model.prepare_inputs_labels_for_multimodal = MethodType( |
| 148 | + hook_fn, self.model.vlm_model |
| 149 | + ) |
0 commit comments