|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +from functools import wraps |
| 4 | +import builtins |
| 5 | +import os |
| 6 | +import time |
| 7 | +import inspect |
| 8 | +from typing import Dict |
| 9 | +from tqdm import tqdm |
| 10 | + |
| 11 | +from triton.testing import do_bench, do_bench_cudagraph |
| 12 | +from triton.runtime.jit import KernelInterface |
| 13 | +from triton.runtime.errors import OutOfResources |
| 14 | +import triton |
| 15 | + |
| 16 | +from lightllm.utils.log_utils import init_logger |
| 17 | + |
| 18 | +logger = init_logger(__name__) |
| 19 | + |
| 20 | + |
| 21 | +def closest_power_of_2(n): |
| 22 | + n = int(n) |
| 23 | + # 对于小于等于 1 的情况,直接返回 1 |
| 24 | + if n <= 1: |
| 25 | + return 1 |
| 26 | + # 使用位运算查找最接近的 2 的幂 |
| 27 | + lower = 1 << (n.bit_length() - 1) |
| 28 | + upper = lower << 1 |
| 29 | + return lower if (n - lower) < (upper - n) else upper |
| 30 | + |
| 31 | + |
| 32 | +def get_str(name_list, value_list): |
| 33 | + return ",".join([f"{name}={value}" for (name, value) in zip(name_list, value_list)]) |
| 34 | + |
| 35 | + |
| 36 | +class Autotuner(KernelInterface): |
| 37 | + def __init__( |
| 38 | + self, |
| 39 | + fn, |
| 40 | + arg_names, |
| 41 | + configs, |
| 42 | + key, |
| 43 | + reset_to_zero, |
| 44 | + restore_value, |
| 45 | + pre_hook=None, |
| 46 | + post_hook=None, |
| 47 | + prune_configs_by: Dict = None, |
| 48 | + warmup=25, |
| 49 | + rep=100, |
| 50 | + use_cuda_graph=False, |
| 51 | + ): |
| 52 | + if not configs: |
| 53 | + self.configs = [triton.Config({}, num_warps=4, num_stages=2, num_ctas=1)] |
| 54 | + else: |
| 55 | + self.configs = configs |
| 56 | + self.key_idx = [arg_names.index(k) for k in key] |
| 57 | + self.cache = {} |
| 58 | + self.arg_names = arg_names |
| 59 | + |
| 60 | + # Reset to zero or restore values |
| 61 | + self.reset_idx = [] |
| 62 | + if reset_to_zero is not None: |
| 63 | + self.reset_idx = [arg_names.index(k) for k in reset_to_zero] |
| 64 | + self.restore_idx = [] |
| 65 | + if restore_value is not None: |
| 66 | + self.restore_idx = [arg_names.index(k) for k in restore_value] |
| 67 | + |
| 68 | + # Hook to reset or restore for required tensors |
| 69 | + self.pre_hook = lambda args, reset_only=False: 0 |
| 70 | + self.post_hook = lambda args, exception: 0 |
| 71 | + if pre_hook: |
| 72 | + self.pre_hook = pre_hook |
| 73 | + elif len(self.reset_idx) > 0 or len(self.restore_idx) > 0: |
| 74 | + |
| 75 | + def _pre_hook(args, reset_only=False): |
| 76 | + for i in self.reset_idx: |
| 77 | + args[i].zero_() |
| 78 | + if not reset_only: |
| 79 | + self.restore_copies = [args[i].clone() for i in self.restore_idx] |
| 80 | + |
| 81 | + self.pre_hook = _pre_hook |
| 82 | + |
| 83 | + if post_hook: |
| 84 | + self.post_hook = post_hook |
| 85 | + elif len(self.restore_idx) > 0: |
| 86 | + |
| 87 | + def _post_hook(args, exception): |
| 88 | + for i, j in enumerate(self.restore_idx): |
| 89 | + args[j].copy_(self.restore_copies[i]) |
| 90 | + self.restore_copies = [] |
| 91 | + |
| 92 | + self.post_hook = _post_hook |
| 93 | + |
| 94 | + self.perf_model = None |
| 95 | + self.configs_top_k = 1.0 |
| 96 | + self.early_config_prune = None |
| 97 | + if prune_configs_by: |
| 98 | + self.perf_model = prune_configs_by.get("perf_model", self.perf_model) |
| 99 | + self.configs_top_k = prune_configs_by.get("top_k", self.configs_top_k) |
| 100 | + self.early_config_prune = prune_configs_by.get("early_config_prune", self.early_config_prune) |
| 101 | + |
| 102 | + self.fn = fn |
| 103 | + self.fn_name = f"{os.path.relpath(fn.__module__)}.{fn.__name__}" |
| 104 | + self.base_fn = fn |
| 105 | + while not inspect.isfunction(self.base_fn): |
| 106 | + self.base_fn = self.base_fn.fn |
| 107 | + self.num_warmups = warmup |
| 108 | + self.num_reps = rep |
| 109 | + import torch |
| 110 | + |
| 111 | + self.use_cuda_graph = use_cuda_graph and torch.cuda.is_available() |
| 112 | + |
| 113 | + def _bench(self, *args, config, **meta): |
| 114 | + from triton.compiler.errors import CompileTimeAssertionFailure |
| 115 | + |
| 116 | + # check for conflicts, i.e. meta-parameters both provided |
| 117 | + # as kwargs and by the autotuner |
| 118 | + conflicts = meta.keys() & config.all_kwargs().keys() |
| 119 | + if conflicts: |
| 120 | + # raise ValueError(f"Conflicting meta-parameters: {', '.join(conflicts)}." |
| 121 | + # " Make sure that you don't re-define auto-tuned symbols.") |
| 122 | + meta = {k: v for k, v in meta.items() if k not in conflicts} |
| 123 | + |
| 124 | + conflicts = meta.keys() & config.all_kwargs().keys() |
| 125 | + if conflicts: |
| 126 | + raise ValueError( |
| 127 | + f"Conflicting meta-parameters: {', '.join(conflicts)}." |
| 128 | + " Make sure that you don't re-define auto-tuned symbols." |
| 129 | + ) |
| 130 | + |
| 131 | + # augment meta-parameters with tunable ones |
| 132 | + current = dict(meta, **config.all_kwargs()) |
| 133 | + full_nargs = {**self.nargs, **current} |
| 134 | + |
| 135 | + def kernel_call(): |
| 136 | + if config.pre_hook: |
| 137 | + config.pre_hook(full_nargs) |
| 138 | + self.pre_hook(args) |
| 139 | + try: |
| 140 | + self.fn.run( |
| 141 | + *args, |
| 142 | + **current, |
| 143 | + ) |
| 144 | + except Exception as e: |
| 145 | + try: |
| 146 | + self.post_hook(args, exception=e) |
| 147 | + finally: |
| 148 | + # Throw exception raised by `self.fn.run` |
| 149 | + raise |
| 150 | + |
| 151 | + self.post_hook(args, exception=None) |
| 152 | + |
| 153 | + try: |
| 154 | + if self.use_cuda_graph: |
| 155 | + import torch |
| 156 | + |
| 157 | + with torch.cuda.stream(torch.cuda.Stream()): |
| 158 | + bench_res = do_bench_cudagraph(kernel_call, rep=self.num_reps, return_mode="median") |
| 159 | + return bench_res |
| 160 | + return do_bench(kernel_call, warmup=self.num_warmups, rep=self.num_reps, quantiles=(0.5, 0.2, 0.8)) |
| 161 | + except (OutOfResources, CompileTimeAssertionFailure): |
| 162 | + return float("inf") if self.use_cuda_graph else [float("inf"), float("inf"), float("inf")] |
| 163 | + |
| 164 | + def run(self, *args, **kwargs): |
| 165 | + if os.environ.get("ENABLE_AUTOTUNE", "0") == "0": |
| 166 | + return self.fn.run(*args, **kwargs) |
| 167 | + |
| 168 | + self.nargs = dict(zip(self.arg_names, args)) |
| 169 | + used_cached_result = True |
| 170 | + if len(self.configs) > 1: |
| 171 | + all_args = {**self.nargs, **kwargs} |
| 172 | + _args = [] |
| 173 | + _args_name = [] |
| 174 | + for name in self.arg_names: |
| 175 | + if name in all_args: |
| 176 | + _args.append(all_args[name]) |
| 177 | + _args_name.append(name) |
| 178 | + key_list = [_args[i] for i in self.key_idx] |
| 179 | + key = tuple(key_list) |
| 180 | + if key not in self.cache: |
| 181 | + _args_name = [] |
| 182 | + for name in self.arg_names: |
| 183 | + if name in all_args: |
| 184 | + _args_name.append(name) |
| 185 | + name_list = [_args_name[i] for i in self.key_idx] |
| 186 | + used_cached_result = False |
| 187 | + bench_start = time.time() |
| 188 | + timings = { |
| 189 | + config: self._bench(*args, config=config, **kwargs) |
| 190 | + for config in tqdm(self.configs, desc=f"Tuning {self.fn_name}::{get_str(name_list, key_list)}") |
| 191 | + } |
| 192 | + bench_end = time.time() |
| 193 | + self.bench_time = bench_end - bench_start |
| 194 | + self.cache[key] = builtins.min(timings, key=timings.get) |
| 195 | + self.pre_hook(args, reset_only=True) |
| 196 | + self.configs_timings = timings |
| 197 | + config = self.cache[key] |
| 198 | + else: |
| 199 | + config = self.configs[0] |
| 200 | + self.best_config = config |
| 201 | + |
| 202 | + conflicts = kwargs.keys() & config.all_kwargs().keys() |
| 203 | + kwargs = {k: v for k, v in kwargs.items() if k not in conflicts} |
| 204 | + |
| 205 | + if not used_cached_result: |
| 206 | + logger.debug( |
| 207 | + f"Triton autotuning for function {self.base_fn.__name__} finished after " |
| 208 | + f"{self.bench_time:.2f}s; best config selected: {self.best_config};" |
| 209 | + ) |
| 210 | + if config.pre_hook is not None: |
| 211 | + config.pre_hook({**self.nargs, **kwargs, **config.all_kwargs()}) |
| 212 | + |
| 213 | + ret = self.fn.run( |
| 214 | + *args, |
| 215 | + **kwargs, |
| 216 | + **config.all_kwargs(), |
| 217 | + ) |
| 218 | + |
| 219 | + self.nargs = None |
| 220 | + return ret |
| 221 | + |
| 222 | + def prune_configs(self, kwargs): |
| 223 | + pruned_configs = self.configs |
| 224 | + if self.early_config_prune: |
| 225 | + pruned_configs = self.early_config_prune(self.configs, self.nargs, **kwargs) |
| 226 | + if self.perf_model: |
| 227 | + top_k = self.configs_top_k |
| 228 | + if isinstance(top_k, float) and top_k <= 1.0: |
| 229 | + top_k = int(len(self.configs) * top_k) |
| 230 | + if len(pruned_configs) > top_k: |
| 231 | + est_timing = { |
| 232 | + config: self.perf_model( |
| 233 | + **self.nargs, |
| 234 | + **kwargs, |
| 235 | + **config.all_kwargs(), |
| 236 | + ) |
| 237 | + for config in pruned_configs |
| 238 | + } |
| 239 | + pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[:top_k] |
| 240 | + return pruned_configs |
| 241 | + |
| 242 | + def warmup(self, *args, **kwargs): |
| 243 | + self.nargs = dict(zip(self.arg_names, args)) |
| 244 | + ret = [] |
| 245 | + for config in self.prune_configs(kwargs): |
| 246 | + ret.append( |
| 247 | + self.fn.warmup( |
| 248 | + *args, |
| 249 | + **kwargs, |
| 250 | + **config.all_kwargs(), |
| 251 | + ) |
| 252 | + ) |
| 253 | + self.nargs = None |
| 254 | + return ret |
| 255 | + |
| 256 | + |
| 257 | +def autotune( |
| 258 | + configs, |
| 259 | + key, |
| 260 | + prune_configs_by=None, |
| 261 | + reset_to_zero=None, |
| 262 | + restore_value=None, |
| 263 | + pre_hook=None, |
| 264 | + post_hook=None, |
| 265 | + warmup=25, |
| 266 | + rep=100, |
| 267 | + use_cuda_graph=True, |
| 268 | +): |
| 269 | + def autotuned(fn): |
| 270 | + return Autotuner( |
| 271 | + fn, |
| 272 | + fn.arg_names, |
| 273 | + configs, |
| 274 | + key, |
| 275 | + reset_to_zero, |
| 276 | + restore_value, |
| 277 | + pre_hook=pre_hook, |
| 278 | + post_hook=post_hook, |
| 279 | + prune_configs_by=prune_configs_by, |
| 280 | + warmup=warmup, |
| 281 | + rep=rep, |
| 282 | + use_cuda_graph=use_cuda_graph, |
| 283 | + ) |
| 284 | + |
| 285 | + return autotuned |
0 commit comments