|
| 1 | +import pytest |
| 2 | +import torch |
| 3 | +from lightllm.models.llama.triton_kernel.ppl_int8kv_flash_decoding_diverse_stage1 import flash_decode_stage1 |
| 4 | + |
| 5 | + |
| 6 | +@pytest.fixture |
| 7 | +def setup_tensors(): |
| 8 | + batch_size = 4 |
| 9 | + num_heads = 4 |
| 10 | + kv_head_num = 1 |
| 11 | + seq_len = 256 |
| 12 | + head_dim = 128 |
| 13 | + max_len_in_batch = seq_len |
| 14 | + block_seq = 256 |
| 15 | + max_batch_group_size = 4 |
| 16 | + quant_group_size = 8 |
| 17 | + |
| 18 | + test_dtype = torch.float32 |
| 19 | + |
| 20 | + kv_shape = (batch_size * seq_len, kv_head_num, head_dim) |
| 21 | + kv_scale_shape = (batch_size * seq_len, kv_head_num, head_dim // quant_group_size) |
| 22 | + |
| 23 | + q = torch.randn(size=(batch_size, num_heads, head_dim), dtype=test_dtype, device="cuda") |
| 24 | + k = torch.randint(low=-100, high=100, size=kv_shape, dtype=torch.int8, device="cuda") |
| 25 | + k_scale = torch.ones(size=kv_scale_shape, dtype=test_dtype, device="cuda") |
| 26 | + v = torch.randint(low=-100, high=100, size=kv_shape, dtype=torch.int8, device="cuda") |
| 27 | + v_scale = torch.ones(size=kv_scale_shape, dtype=test_dtype, device="cuda") |
| 28 | + Req_to_tokens = torch.arange(0, seq_len * batch_size, dtype=torch.int32, device="cuda").view(batch_size, seq_len) |
| 29 | + B_req_idx = torch.arange(batch_size, dtype=torch.int32, device="cuda") |
| 30 | + b_shared_seq_len = torch.full((batch_size,), seq_len, dtype=torch.int32, device="cuda") |
| 31 | + b_mark_shared_group = torch.ones(batch_size, dtype=torch.int32, device="cuda") |
| 32 | + mid_out = torch.zeros( |
| 33 | + size=(batch_size, num_heads, (seq_len // block_seq) + 2, head_dim), dtype=q.dtype, device="cuda" |
| 34 | + ) |
| 35 | + mid_out_logsumexp = torch.zeros( |
| 36 | + size=(batch_size, num_heads, (seq_len // block_seq) + 2), dtype=q.dtype, device="cuda" |
| 37 | + ) |
| 38 | + |
| 39 | + return { |
| 40 | + "q": q, |
| 41 | + "k": k, |
| 42 | + "k_scale": k_scale, |
| 43 | + "v": v, |
| 44 | + "v_scale": v_scale, |
| 45 | + "Req_to_tokens": Req_to_tokens, |
| 46 | + "B_req_idx": B_req_idx, |
| 47 | + "b_shared_seq_len": b_shared_seq_len, |
| 48 | + "b_mark_shared_group": b_mark_shared_group, |
| 49 | + "max_len_in_batch": max_len_in_batch, |
| 50 | + "mid_out": mid_out, |
| 51 | + "mid_out_logsumexp": mid_out_logsumexp, |
| 52 | + "block_seq": block_seq, |
| 53 | + "max_batch_group_size": max_batch_group_size, |
| 54 | + } |
| 55 | + |
| 56 | + |
| 57 | +def test_flash_decode_stage1_execution(setup_tensors): |
| 58 | + flash_decode_stage1( |
| 59 | + q=setup_tensors["q"], |
| 60 | + k=setup_tensors["k"], |
| 61 | + k_scale=setup_tensors["k_scale"], |
| 62 | + v=setup_tensors["v"], |
| 63 | + v_scale=setup_tensors["v_scale"], |
| 64 | + Req_to_tokens=setup_tensors["Req_to_tokens"], |
| 65 | + B_req_idx=setup_tensors["B_req_idx"], |
| 66 | + b_shared_seq_len=setup_tensors["b_shared_seq_len"], |
| 67 | + b_mark_shared_group=setup_tensors["b_mark_shared_group"], |
| 68 | + max_len_in_batch=setup_tensors["max_len_in_batch"], |
| 69 | + mid_out=setup_tensors["mid_out"], |
| 70 | + mid_out_logsumexp=setup_tensors["mid_out_logsumexp"], |
| 71 | + block_seq=setup_tensors["block_seq"], |
| 72 | + max_batch_group_size=setup_tensors["max_batch_group_size"], |
| 73 | + ) |
| 74 | + |
| 75 | + q = setup_tensors["q"] |
| 76 | + k = setup_tensors["k"] |
| 77 | + v = setup_tensors["v"] |
| 78 | + true_mid_out = torch.zeros_like(setup_tensors["mid_out"]) |
| 79 | + true_mid_out_logsumexp = torch.zeros_like(setup_tensors["mid_out_logsumexp"]) |
| 80 | + new_q = q |
| 81 | + new_k = k.to(q.dtype) |
| 82 | + new_v = v.to(q.dtype) |
| 83 | + |
| 84 | + from lightllm.models.llama.triton_kernel.gqa_flash_decoding_stage1 import ( |
| 85 | + flash_decode_stage1 as gqa_flash_decode_stage1, |
| 86 | + ) |
| 87 | + |
| 88 | + gqa_flash_decode_stage1( |
| 89 | + q=new_q, |
| 90 | + k=new_k, |
| 91 | + v=new_v, |
| 92 | + Req_to_tokens=setup_tensors["Req_to_tokens"], |
| 93 | + B_req_idx=setup_tensors["B_req_idx"], |
| 94 | + B_Seqlen=setup_tensors["b_shared_seq_len"], |
| 95 | + max_len_in_batch=setup_tensors["max_len_in_batch"], |
| 96 | + mid_out=true_mid_out, |
| 97 | + mid_out_logsumexp=true_mid_out_logsumexp, |
| 98 | + block_seq=setup_tensors["block_seq"], |
| 99 | + ) |
| 100 | + print(setup_tensors["mid_out"][0:4, 0, 0, 0], true_mid_out[0:4, 0, 0, 0]) |
| 101 | + assert torch.allclose( |
| 102 | + setup_tensors["mid_out"][0:4, 0, 0, 0], true_mid_out[0:4, 0, 0, 0], atol=1e-2 |
| 103 | + ), "Mid output does not match expected values" |
| 104 | + assert torch.allclose( |
| 105 | + setup_tensors["mid_out_logsumexp"], true_mid_out_logsumexp, atol=1e-2 |
| 106 | + ), "LogSumExp output does not match expected values" |
0 commit comments