|
| 1 | +import os |
| 2 | +import argparse |
| 3 | +import yaml |
| 4 | +import requests |
| 5 | +import json |
| 6 | +import time |
| 7 | +import random |
| 8 | +import numpy as np |
| 9 | +from tqdm import tqdm |
| 10 | +from typing import Union, List, Tuple |
| 11 | +from concurrent.futures import ThreadPoolExecutor |
| 12 | +from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast |
| 13 | +import aiohttp |
| 14 | +import asyncio |
| 15 | + |
| 16 | + |
| 17 | +def seed_all(seed): |
| 18 | + random.seed(seed) |
| 19 | + os.environ["PYTHONHASHSEED"] = str(seed) |
| 20 | + np.random.seed(seed) |
| 21 | + |
| 22 | + |
| 23 | +def get_tokenizer( |
| 24 | + tokenizer_name: str, |
| 25 | +) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]: |
| 26 | + """Gets a tokenizer for the given model name via Huggingface.""" |
| 27 | + |
| 28 | + tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, trust_remote_code=True) |
| 29 | + return tokenizer |
| 30 | + |
| 31 | + |
| 32 | +def get_output_length(reqs_num: int, output_len: int) -> List[int]: |
| 33 | + min_len, max_len = 2, output_len * 2 |
| 34 | + mean = (min_len + max_len) * 0.5 |
| 35 | + std = mean |
| 36 | + output_lens = [] |
| 37 | + for _ in range(reqs_num): |
| 38 | + cur_len = random.gauss(mean, std) |
| 39 | + cur_len = round(cur_len) |
| 40 | + if cur_len < min_len: |
| 41 | + cur_len = min_len |
| 42 | + elif cur_len > max_len: |
| 43 | + cur_len = max_len |
| 44 | + output_lens.append(cur_len) |
| 45 | + return output_lens |
| 46 | + |
| 47 | + |
| 48 | +def gen_random_input_text(tokenizer) -> str: |
| 49 | + random_ids = [random.randint(512, 8192) for _ in range(1024)] |
| 50 | + random_text = tokenizer.decode(random_ids) |
| 51 | + return random_text |
| 52 | + |
| 53 | + |
| 54 | +def gen_random_data( |
| 55 | + input_len: int, output_len: int, reqs_num: int, tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast] |
| 56 | +) -> Tuple[List[str], List[int], List[int]]: |
| 57 | + prompts = [] |
| 58 | + input_lens = [] |
| 59 | + output_lens = get_output_length(reqs_num, output_len) |
| 60 | + for i in range(reqs_num): |
| 61 | + input_text = gen_random_input_text(tokenizer) |
| 62 | + prompts.append(input_text) |
| 63 | + input_lens.append(input_len) |
| 64 | + print("Generate random data finish.") |
| 65 | + return prompts, input_lens, output_lens |
| 66 | + |
| 67 | + |
| 68 | +async def async_post_stream_lightllm(url, text_input, max_new_tokens, session) -> List[float]: |
| 69 | + try: |
| 70 | + data = { |
| 71 | + "inputs": text_input, |
| 72 | + "parameters": { |
| 73 | + "do_sample": False, |
| 74 | + "ignore_eos": True, |
| 75 | + "max_new_tokens": max_new_tokens, |
| 76 | + }, |
| 77 | + } |
| 78 | + headers = {"Content-Type": "application/json"} |
| 79 | + used_time = [] |
| 80 | + start_time = time.time() |
| 81 | + last_time = start_time |
| 82 | + |
| 83 | + async with session.post(url, headers=headers, json=data) as response: |
| 84 | + if response.status != 200: |
| 85 | + return [] |
| 86 | + |
| 87 | + async for line in response.content: |
| 88 | + if line and line.startswith(b"data:"): |
| 89 | + # print(line) |
| 90 | + current_time = time.time() |
| 91 | + elapsed_time = current_time - last_time |
| 92 | + used_time.append(elapsed_time) |
| 93 | + last_time = current_time |
| 94 | + return used_time |
| 95 | + except Exception: |
| 96 | + pass |
| 97 | + |
| 98 | + |
| 99 | +async def continuous_sender( |
| 100 | + session, pending_tasks, async_task, url, prompts, max_new_tokens, request_queue, stop_send, sent_count, input_qps |
| 101 | +): |
| 102 | + prompt_index = 0 |
| 103 | + while not stop_send.is_set(): |
| 104 | + prompt = prompts[prompt_index % len(prompts)] |
| 105 | + max_tokens = max_new_tokens[prompt_index % len(max_new_tokens)] |
| 106 | + |
| 107 | + task = asyncio.create_task(async_task(url, prompt, max_tokens, session)) |
| 108 | + pending_tasks.append(task) |
| 109 | + await request_queue.put(task) |
| 110 | + |
| 111 | + prompt_index += 1 |
| 112 | + sent_count[0] += 1 |
| 113 | + # 控制发送速率 |
| 114 | + await asyncio.sleep(1.0 / input_qps) |
| 115 | + |
| 116 | + |
| 117 | +async def response_collector( |
| 118 | + request_queue, |
| 119 | + results, |
| 120 | + reqs_num, |
| 121 | + stop_event, |
| 122 | + stop_send, |
| 123 | + counter, |
| 124 | + end_time, |
| 125 | + sent_count, |
| 126 | + force_terminate, |
| 127 | + pending_tasks, |
| 128 | +): |
| 129 | + try: |
| 130 | + while True: |
| 131 | + try: |
| 132 | + task = await asyncio.wait_for(request_queue.get(), timeout=1.0) |
| 133 | + result = await task |
| 134 | + request_queue.task_done() |
| 135 | + assert result is not None |
| 136 | + if len(result) > 1 and not stop_send.is_set(): |
| 137 | + results.append(result) |
| 138 | + current_count = counter[0] + 1 |
| 139 | + counter[0] = current_count |
| 140 | + print(f"\rfinished_reqs:{current_count} / target_reqs:{reqs_num} / sent_reqs:{sent_count[0]}", end="") |
| 141 | + |
| 142 | + if len(results) >= reqs_num and not stop_send.is_set(): |
| 143 | + end_time[0] = time.time() |
| 144 | + print("\nReached target number of responses") |
| 145 | + stop_send.set() |
| 146 | + if force_terminate and not stop_event.is_set(): |
| 147 | + stop_event.set() |
| 148 | + else: |
| 149 | + print("\nWaiting remining responses to finish...") |
| 150 | + |
| 151 | + if current_count >= sent_count[0] and not stop_event.is_set(): |
| 152 | + stop_event.set() |
| 153 | + |
| 154 | + if stop_event.is_set() and (force_terminate or request_queue.empty()): |
| 155 | + return |
| 156 | + |
| 157 | + except asyncio.TimeoutError: |
| 158 | + if stop_event.is_set() and (force_terminate or request_queue.empty()): |
| 159 | + return |
| 160 | + continue |
| 161 | + except Exception as e: |
| 162 | + print(f"\nError collecting response: {e}") |
| 163 | + finally: |
| 164 | + if force_terminate: |
| 165 | + for task in pending_tasks: |
| 166 | + if not task.done(): |
| 167 | + task.cancel() |
| 168 | + |
| 169 | + |
| 170 | +async def run_continuous_benchmark( |
| 171 | + async_task, url, prompts, max_new_tokens, reqs_num, num_clients, input_qps, force_terminate |
| 172 | +): |
| 173 | + request_queue = asyncio.Queue() |
| 174 | + stop_event = asyncio.Event() |
| 175 | + stop_send = asyncio.Event() |
| 176 | + results_data = [] |
| 177 | + counter = [0] |
| 178 | + sent_count = [0] |
| 179 | + end_time = [0.0] |
| 180 | + pending_tasks = [] |
| 181 | + |
| 182 | + async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(limit=10 * reqs_num)) as session: |
| 183 | + sender_task = asyncio.create_task( |
| 184 | + continuous_sender( |
| 185 | + session, |
| 186 | + pending_tasks, |
| 187 | + async_task, |
| 188 | + url, |
| 189 | + prompts, |
| 190 | + max_new_tokens, |
| 191 | + request_queue, |
| 192 | + stop_send, |
| 193 | + sent_count, |
| 194 | + input_qps, |
| 195 | + ) |
| 196 | + ) |
| 197 | + |
| 198 | + collector_task = [ |
| 199 | + asyncio.create_task( |
| 200 | + response_collector( |
| 201 | + request_queue, |
| 202 | + results_data, |
| 203 | + reqs_num, |
| 204 | + stop_event, |
| 205 | + stop_send, |
| 206 | + counter, |
| 207 | + end_time, |
| 208 | + sent_count, |
| 209 | + force_terminate, |
| 210 | + pending_tasks, |
| 211 | + ) |
| 212 | + ) |
| 213 | + for _ in range(num_clients) |
| 214 | + ] |
| 215 | + await asyncio.wait(collector_task) |
| 216 | + |
| 217 | + if not sender_task.done(): |
| 218 | + sender_task.cancel() |
| 219 | + try: |
| 220 | + await sender_task |
| 221 | + except asyncio.CancelledError: |
| 222 | + pass |
| 223 | + |
| 224 | + return results_data, sent_count[0], end_time[0] |
| 225 | + |
| 226 | + |
| 227 | +model_name = [] |
| 228 | + |
| 229 | + |
| 230 | +def main(): |
| 231 | + parser = argparse.ArgumentParser() |
| 232 | + parser.add_argument("--url", type=str, default="http://127.0.0.1:8000/generate_stream") |
| 233 | + parser.add_argument("--num_clients", type=int, default=100) |
| 234 | + parser.add_argument("--tokenizer_path", type=str, default=None) |
| 235 | + parser.add_argument("--input_num", type=int, default=2000) |
| 236 | + parser.add_argument("--input_qps", type=float, default=30.0) |
| 237 | + parser.add_argument("--input_len", type=int, default=1024) |
| 238 | + parser.add_argument("--output_len", type=int, default=128) |
| 239 | + parser.add_argument("--server_api", type=str, default="lightllm") |
| 240 | + parser.add_argument("--dump_file", type=str, default="") |
| 241 | + parser.add_argument("--seed", type=int, default=0) |
| 242 | + parser.add_argument( |
| 243 | + "--force_terminate", |
| 244 | + type=int, |
| 245 | + default=0, |
| 246 | + help="0: waiting all reqs return; 1: only waiting input_num reqs return", |
| 247 | + ) |
| 248 | + |
| 249 | + args = parser.parse_args() |
| 250 | + if args.dump_file and os.path.exists(args.dump_file): |
| 251 | + # 读取并输出 JSON 内容 |
| 252 | + with open(args.dump_file, "r") as json_file: |
| 253 | + content = json.load(json_file) |
| 254 | + print(json.dumps(content, indent=4)) |
| 255 | + return |
| 256 | + |
| 257 | + assert args.tokenizer_path is not None |
| 258 | + model_name.append(args.tokenizer_path) |
| 259 | + seed_all(args.seed) |
| 260 | + url = args.url |
| 261 | + tokenizer = get_tokenizer(args.tokenizer_path) |
| 262 | + # qps发送模式发送请求的数量不固定,这里暂定为reqs_num的10倍 |
| 263 | + prompts, input_lens, max_new_tokens = gen_random_data( |
| 264 | + args.input_len, args.output_len, 10 * args.input_num, tokenizer |
| 265 | + ) |
| 266 | + |
| 267 | + percentiles = [25, 50, 75, 90, 95, 99, 100] |
| 268 | + if args.server_api == "lightllm": |
| 269 | + async_post_stream = async_post_stream_lightllm |
| 270 | + else: |
| 271 | + raise Exception(f"Not support {args.server_api} server_api.") |
| 272 | + |
| 273 | + dump_dict = {} |
| 274 | + dump_dict["backend"] = args.server_api |
| 275 | + dump_dict["clients"] = args.num_clients |
| 276 | + |
| 277 | + loop = asyncio.new_event_loop() |
| 278 | + asyncio.set_event_loop(loop) |
| 279 | + start_time = time.time() |
| 280 | + results, sent_reqs, end_time = loop.run_until_complete( |
| 281 | + run_continuous_benchmark( |
| 282 | + async_post_stream, |
| 283 | + url, |
| 284 | + prompts, |
| 285 | + max_new_tokens, |
| 286 | + args.input_num, |
| 287 | + args.num_clients, |
| 288 | + args.input_qps, |
| 289 | + args.force_terminate, |
| 290 | + ) |
| 291 | + ) |
| 292 | + loop.close() |
| 293 | + |
| 294 | + first_token_time = [] |
| 295 | + decode_token_time = [] |
| 296 | + request_time = [] |
| 297 | + final_output_lens = [] |
| 298 | + valid_num = 0 |
| 299 | + for result in results: |
| 300 | + if len(result) > 1: # 统计至少decode出两个token的数据 |
| 301 | + first_token_time.append(result[0]) |
| 302 | + decode_token_time.append(sum(result[1:]) / len(result[1:])) |
| 303 | + request_time.append(sum(result)) |
| 304 | + final_output_lens.append(len(result)) |
| 305 | + valid_num += 1 |
| 306 | + |
| 307 | + print( |
| 308 | + f"\n\nvalid num = {valid_num}; all data num = {len(results)}; valid ratio = {valid_num * 1.0 / len(results)}\n" |
| 309 | + ) |
| 310 | + print(f"Total QPS: {valid_num / (end_time - start_time)}") |
| 311 | + print(f"Sender QPS: {sent_reqs / (end_time - start_time)}") |
| 312 | + print(f"Avg Input Length: {sum(input_lens) / len(input_lens)}") |
| 313 | + print(f"Avg Output Length: {sum(final_output_lens) / len(final_output_lens)}") |
| 314 | + print(f"Total Throughput: {(sum(input_lens) + sum(final_output_lens)) / (end_time - start_time)} token/s") |
| 315 | + print(f"Input Throughput: {sum(input_lens) / (end_time - start_time)} token/s") |
| 316 | + print(f"Output Throughput: {sum(final_output_lens) / (end_time - start_time)} token/s") |
| 317 | + print("-" * 10) |
| 318 | + dump_dict["request_num"] = valid_num |
| 319 | + dump_dict["Total QPS"] = valid_num / (end_time - start_time) |
| 320 | + dump_dict["Sender QPS"] = sent_reqs / (end_time - start_time) |
| 321 | + dump_dict["Avg Input Length"] = sum(input_lens) / len(input_lens) |
| 322 | + dump_dict["Avg Output Length"] = sum(final_output_lens) / len(final_output_lens) |
| 323 | + dump_dict["Total Throughput"] = (sum(input_lens) + sum(final_output_lens)) / (end_time - start_time) |
| 324 | + dump_dict["Input Throughput"] = sum(input_lens) / (end_time - start_time) |
| 325 | + dump_dict["Output Throughput"] = sum(final_output_lens) / (end_time - start_time) |
| 326 | + |
| 327 | + values = np.percentile(request_time, percentiles) |
| 328 | + request_time_dict = {} |
| 329 | + for percentile, value in zip(percentiles, values): |
| 330 | + print(f"request_time P{percentile}: {value:.6f}s") |
| 331 | + request_time_dict[f"P{percentile}"] = value |
| 332 | + dump_dict["request_time"] = request_time_dict |
| 333 | + print("-" * 10) |
| 334 | + |
| 335 | + first_token_time_dict = {} |
| 336 | + values = np.percentile(first_token_time, percentiles) |
| 337 | + for percentile, value in zip(percentiles, values): |
| 338 | + print(f"first_token_time P{percentile}: {value:.6f}s") |
| 339 | + first_token_time_dict[f"P{percentile}"] = value |
| 340 | + dump_dict["first_token_time_dict"] = first_token_time_dict |
| 341 | + print("-" * 10) |
| 342 | + |
| 343 | + decode_token_time_dict = {} |
| 344 | + values = np.percentile(decode_token_time, percentiles) |
| 345 | + for percentile, value in zip(percentiles, values): |
| 346 | + print(f"decode_token_time P{percentile}: {value * 1000:.6f}ms") |
| 347 | + decode_token_time_dict[f"P{percentile}"] = value * 1000 |
| 348 | + dump_dict["decode_token_time_dict"] = decode_token_time_dict |
| 349 | + print(dump_dict) |
| 350 | + |
| 351 | + if args.dump_file: |
| 352 | + with open(args.dump_file, "w") as json_file: |
| 353 | + json.dump(dump_dict, json_file, indent=4) |
| 354 | + print(f"Results have been written to {args.dump_file}") |
| 355 | + |
| 356 | + |
| 357 | +if __name__ == "__main__": |
| 358 | + main() |
0 commit comments