|
| 1 | +import numpy as np |
| 2 | +import torch |
| 3 | +from .fused_moe_weight_ep import FusedMoeWeightEP |
| 4 | +from lightllm.utils.log_utils import init_logger |
| 5 | +from typing import Dict |
| 6 | + |
| 7 | +logger = init_logger(__name__) |
| 8 | + |
| 9 | + |
| 10 | +class FusedMoeWeightEPAutoRedundancy: |
| 11 | + def __init__( |
| 12 | + self, |
| 13 | + ep_fused_moe_weight: FusedMoeWeightEP, |
| 14 | + ) -> None: |
| 15 | + super().__init__() |
| 16 | + self._ep_w = ep_fused_moe_weight |
| 17 | + self.redundancy_expert_num = self._ep_w.redundancy_expert_num |
| 18 | + |
| 19 | + def prepare_redundancy_experts( |
| 20 | + self, |
| 21 | + ): |
| 22 | + expert_counter = self._ep_w.routed_expert_counter_tensor.detach().cpu().numpy() |
| 23 | + logger.info( |
| 24 | + f"layer_index {self._ep_w.layer_num} global_rank {self._ep_w.global_rank_} expert_counter: {expert_counter}" |
| 25 | + ) |
| 26 | + self._ep_w.routed_expert_counter_tensor.fill_(0) |
| 27 | + |
| 28 | + start_expert_id = self._ep_w.ep_n_routed_experts * self._ep_w.global_rank_ |
| 29 | + no_redundancy_expert_ids = list(range(start_expert_id, start_expert_id + self._ep_w.ep_n_routed_experts)) |
| 30 | + # 不要选中当前已经存在的非冗余专家作为冗余专家 |
| 31 | + expert_counter[no_redundancy_expert_ids] = 0 |
| 32 | + |
| 33 | + self.redundancy_expert_ids = list(np.argsort(expert_counter)[-self.redundancy_expert_num :]) |
| 34 | + logger.info( |
| 35 | + f"layer_index {self._ep_w.layer_num} global_rank {self._ep_w.global_rank_}" |
| 36 | + f" new select redundancy_expert_ids : {self.redundancy_expert_ids}" |
| 37 | + ) |
| 38 | + |
| 39 | + # 准备加载过度变量。 |
| 40 | + self.experts_up_projs = [None] * self.redundancy_expert_num |
| 41 | + self.experts_gate_projs = [None] * self.redundancy_expert_num |
| 42 | + self.experts_up_proj_scales = [None] * self.redundancy_expert_num |
| 43 | + self.experts_gate_proj_scales = [None] * self.redundancy_expert_num |
| 44 | + self.w2_list = [None] * self.redundancy_expert_num |
| 45 | + self.w2_scale_list = [None] * self.redundancy_expert_num |
| 46 | + self.w1 = [None, None] # weight, weight_scale |
| 47 | + self.w2 = [None, None] # weight, weight_scale |
| 48 | + return |
| 49 | + |
| 50 | + def load_hf_weights(self, weights): |
| 51 | + # 加载冗余专家的权重参数 |
| 52 | + for i, redundant_expert_id in enumerate(self.redundancy_expert_ids): |
| 53 | + i_experts = redundant_expert_id |
| 54 | + w1_weight = f"{self._ep_w.weight_prefix}.{i_experts}.{self._ep_w.w1_weight_name}.weight" |
| 55 | + w2_weight = f"{self._ep_w.weight_prefix}.{i_experts}.{self._ep_w.w2_weight_name}.weight" |
| 56 | + w3_weight = f"{self._ep_w.weight_prefix}.{i_experts}.{self._ep_w.w3_weight_name}.weight" |
| 57 | + if w1_weight in weights: |
| 58 | + self.experts_gate_projs[i] = weights[w1_weight] |
| 59 | + if w3_weight in weights: |
| 60 | + self.experts_up_projs[i] = weights[w3_weight] |
| 61 | + if w2_weight in weights: |
| 62 | + self.w2_list[i] = weights[w2_weight] |
| 63 | + |
| 64 | + if self._ep_w.quantized_weight: |
| 65 | + self._load_weight_scale(weights) |
| 66 | + self._fuse() |
| 67 | + |
| 68 | + def _fuse(self): |
| 69 | + if self._ep_w.quantized_weight: |
| 70 | + self._fuse_weight_scale() |
| 71 | + with self._ep_w.lock: |
| 72 | + if ( |
| 73 | + hasattr(self, "experts_up_projs") |
| 74 | + and None not in self.experts_up_projs |
| 75 | + and None not in self.experts_gate_projs |
| 76 | + and None not in self.w2_list |
| 77 | + ): |
| 78 | + w1_list = [] |
| 79 | + for i_experts in range(self.redundancy_expert_num): |
| 80 | + expert_gate_up_proj = torch.cat( |
| 81 | + [self.experts_gate_projs[i_experts], self.experts_up_projs[i_experts]], dim=0 |
| 82 | + ) |
| 83 | + expert_gate_up_proj = expert_gate_up_proj |
| 84 | + w1_list.append(expert_gate_up_proj) |
| 85 | + |
| 86 | + inter_shape, hidden_size = w1_list[0].shape[0], w1_list[0].shape[1] |
| 87 | + w1 = torch._utils._flatten_dense_tensors(w1_list).view(len(w1_list), inter_shape, hidden_size) |
| 88 | + inter_shape, hidden_size = self.w2_list[0].shape[0], self.w2_list[0].shape[1] |
| 89 | + w2 = torch._utils._flatten_dense_tensors(self.w2_list).view(len(self.w2_list), inter_shape, hidden_size) |
| 90 | + if not self._ep_w.quantized_weight and self._ep_w.quant_method is not None: |
| 91 | + self.w1 = self._ep_w.quant_method.quantize(w1) |
| 92 | + self.w2 = self._ep_w.quant_method.quantize(w2) |
| 93 | + else: |
| 94 | + self.w1[0] = w1 |
| 95 | + self.w2[0] = w2 |
| 96 | + |
| 97 | + delattr(self, "w2_list") |
| 98 | + delattr(self, "experts_up_projs") |
| 99 | + delattr(self, "experts_gate_projs") |
| 100 | + |
| 101 | + def _fuse_weight_scale(self): |
| 102 | + with self._ep_w.lock: |
| 103 | + if ( |
| 104 | + hasattr(self, "experts_up_proj_scales") |
| 105 | + and None not in self.experts_up_proj_scales |
| 106 | + and None not in self.experts_gate_proj_scales |
| 107 | + and None not in self.w2_scale_list |
| 108 | + ): |
| 109 | + w1_scale_list = [] |
| 110 | + for i_experts in range(self.redundancy_expert_num): |
| 111 | + expert_gate_up_proj_scale = torch.cat( |
| 112 | + [self.experts_gate_proj_scales[i_experts], self.experts_up_proj_scales[i_experts]], dim=0 |
| 113 | + ) |
| 114 | + w1_scale_list.append(expert_gate_up_proj_scale) |
| 115 | + |
| 116 | + inter_shape, hidden_size = w1_scale_list[0].shape[0], w1_scale_list[0].shape[1] |
| 117 | + w1_scale = torch._utils._flatten_dense_tensors(w1_scale_list).view( |
| 118 | + len(w1_scale_list), inter_shape, hidden_size |
| 119 | + ) |
| 120 | + inter_shape, hidden_size = self.w2_scale_list[0].shape[0], self.w2_scale_list[0].shape[1] |
| 121 | + w2_scale = torch._utils._flatten_dense_tensors(self.w2_scale_list).view( |
| 122 | + len(self.w2_scale_list), inter_shape, hidden_size |
| 123 | + ) |
| 124 | + self.w1[1] = w1_scale |
| 125 | + self.w2[1] = w2_scale |
| 126 | + delattr(self, "w2_scale_list") |
| 127 | + delattr(self, "experts_up_proj_scales") |
| 128 | + delattr(self, "experts_gate_proj_scales") |
| 129 | + |
| 130 | + def _load_weight_scale(self, weights: Dict[str, torch.Tensor]) -> None: |
| 131 | + # 加载冗余专家的scale参数 |
| 132 | + for i, redundant_expert_id in enumerate(self.redundancy_expert_ids): |
| 133 | + i_experts = redundant_expert_id |
| 134 | + w1_scale = ( |
| 135 | + f"{self._ep_w.weight_prefix}.{i_experts}.{self._ep_w.w1_weight_name}.{self._ep_w.weight_scale_suffix}" |
| 136 | + ) |
| 137 | + w2_scale = ( |
| 138 | + f"{self._ep_w.weight_prefix}.{i_experts}.{self._ep_w.w2_weight_name}.{self._ep_w.weight_scale_suffix}" |
| 139 | + ) |
| 140 | + w3_scale = ( |
| 141 | + f"{self._ep_w.weight_prefix}.{i_experts}.{self._ep_w.w3_weight_name}.{self._ep_w.weight_scale_suffix}" |
| 142 | + ) |
| 143 | + if w1_scale in weights: |
| 144 | + self.experts_gate_proj_scales[i] = weights[w1_scale] |
| 145 | + if w3_scale in weights: |
| 146 | + self.experts_up_proj_scales[i] = weights[w3_scale] |
| 147 | + if w2_scale in weights: |
| 148 | + self.w2_scale_list[i] = weights[w2_scale] |
| 149 | + |
| 150 | + def commit(self): |
| 151 | + for index, dest_tensor in enumerate(self._ep_w.w1): |
| 152 | + if dest_tensor is not None: |
| 153 | + assert isinstance( |
| 154 | + dest_tensor, torch.Tensor |
| 155 | + ), f"dest_tensor should be a torch.Tensor, but got {type(dest_tensor)}" |
| 156 | + dest_tensor[-self.redundancy_expert_num :, :, :] = self.w1[index][:, :, :] |
| 157 | + |
| 158 | + for index, dest_tensor in enumerate(self._ep_w.w2): |
| 159 | + if dest_tensor is not None: |
| 160 | + assert isinstance( |
| 161 | + dest_tensor, torch.Tensor |
| 162 | + ), f"dest_tensor should be a torch.Tensor, but got {type(dest_tensor)}" |
| 163 | + dest_tensor[-self.redundancy_expert_num :, :, :] = self.w2[index][:, :, :] |
| 164 | + |
| 165 | + self._ep_w.redundancy_expert_ids_tensor.copy_( |
| 166 | + torch.tensor(self.redundancy_expert_ids, dtype=torch.int64, device="cpu") |
| 167 | + ) |
0 commit comments