|
| 1 | +import re |
| 2 | +import os |
| 3 | +import json |
| 4 | + |
| 5 | +from typing import List |
| 6 | +from io import BytesIO |
| 7 | +from PIL import Image |
| 8 | +from safetensors import safe_open |
| 9 | + |
| 10 | +import torch |
| 11 | +import torch.nn as nn |
| 12 | +from transformers import ( |
| 13 | + CLIPVisionModel, |
| 14 | + CLIPVisionConfig, |
| 15 | + SiglipVisionConfig, |
| 16 | + SiglipVisionModel, |
| 17 | +) |
| 18 | + |
| 19 | +from .configuration_mineru2 import Mineru2QwenConfig |
| 20 | +from .image_processing_mineru2 import Mineru2ImageProcessor |
| 21 | + |
| 22 | +from lightllm.server.multimodal_params import ImageItem |
| 23 | +from lightllm.server.embed_cache.utils import read_shm, get_shm_name_data |
| 24 | +from lightllm.utils.log_utils import init_logger |
| 25 | + |
| 26 | +logger = init_logger(__name__) |
| 27 | + |
| 28 | + |
| 29 | +def build_vision_tower(config: Mineru2QwenConfig): |
| 30 | + vision_tower = getattr(config, "mm_vision_tower", getattr(config, "vision_tower", "")) |
| 31 | + model_path = getattr(config, "_name_or_path", "") |
| 32 | + |
| 33 | + if "clip" in vision_tower.lower(): |
| 34 | + if model_path: |
| 35 | + vision_config = CLIPVisionConfig.from_pretrained(f"{model_path}/{vision_tower}") |
| 36 | + return CLIPVisionModel(vision_config) |
| 37 | + else: |
| 38 | + vision_config = CLIPVisionConfig.from_pretrained(vision_tower) |
| 39 | + return CLIPVisionModel(vision_config) |
| 40 | + elif "siglip" in vision_tower.lower(): |
| 41 | + if model_path: |
| 42 | + vision_config = SiglipVisionConfig.from_pretrained(f"{model_path}/{vision_tower}") |
| 43 | + return SiglipVisionModel(vision_config) |
| 44 | + else: |
| 45 | + vision_config = SiglipVisionConfig.from_pretrained(vision_tower) |
| 46 | + return SiglipVisionModel(vision_config) |
| 47 | + else: |
| 48 | + raise ValueError(f"Unknown vision tower: {model_path}") |
| 49 | + |
| 50 | + |
| 51 | +def build_vision_projector(config: Mineru2QwenConfig): |
| 52 | + projector_type = getattr(config, "mm_projector_type", "linear") |
| 53 | + |
| 54 | + if projector_type == "linear": |
| 55 | + return nn.Linear(config.mm_hidden_size, config.hidden_size) |
| 56 | + |
| 57 | + mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type) |
| 58 | + if mlp_gelu_match: |
| 59 | + mlp_depth = int(mlp_gelu_match.group(1)) |
| 60 | + modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] |
| 61 | + for _ in range(1, mlp_depth): |
| 62 | + modules.append(nn.GELU()) |
| 63 | + modules.append(nn.Linear(config.hidden_size, config.hidden_size)) |
| 64 | + return nn.Sequential(*modules) |
| 65 | + |
| 66 | + if projector_type == "identity": |
| 67 | + return nn.Identity() |
| 68 | + |
| 69 | + raise ValueError(f"Unknown projector type: {projector_type}") |
| 70 | + |
| 71 | + |
| 72 | +class Mineru2VisionModel: |
| 73 | + def __init__(self): |
| 74 | + pass |
| 75 | + |
| 76 | + def load_model(self, weight_dir): |
| 77 | + # config_file = os.path.join(weight_dir, "config.json") |
| 78 | + vision_config = Mineru2QwenConfig.from_pretrained(weight_dir) |
| 79 | + |
| 80 | + self.vision_tower = build_vision_tower(vision_config) |
| 81 | + self.projector = build_vision_projector(vision_config) |
| 82 | + self.image_processor = Mineru2ImageProcessor() |
| 83 | + |
| 84 | + def forward(self, x): |
| 85 | + return self.projector(self.vision_tower(x)) |
| 86 | + |
| 87 | + def encode(self, images: List[ImageItem]): |
| 88 | + img_tensors = [] |
| 89 | + uuids = [] |
| 90 | + valid_id = 0 |
| 91 | + valid_ids = [] |
| 92 | + |
| 93 | + for i, img in enumerate(images): |
| 94 | + if isinstance(img, ImageItem): |
| 95 | + uuids.append(img.uuid) |
| 96 | + image_data = read_shm(get_shm_name_data(img.uuid)) |
| 97 | + image_data = Image.open(BytesIO(image_data)).convert("RGB") |
| 98 | + t = self.image_processor.preprocess(image_data, return_tensors="pt")["pixel_values"] |
| 99 | + img_tensors.append(t) |
| 100 | + else: |
| 101 | + raise Exception("Unsupport input types: {} for {}".format(type(img), img)) |
| 102 | + |
| 103 | + cur_num = img_tensors[-1].shape[0] |
| 104 | + valid_ids.append([valid_id, valid_id + cur_num]) |
| 105 | + valid_id += cur_num |
| 106 | + |
| 107 | + if len(img_tensors) <= 0: |
| 108 | + return None |
| 109 | + |
| 110 | + img = torch.cat(img_tensors, dim=0) |
| 111 | + all_img_embeds = self.forward(img) |
| 112 | + |
| 113 | + return all_img_embeds, uuids, valid_ids |
0 commit comments