|
| 1 | +import gc |
| 2 | +import os |
| 3 | + |
| 4 | +import torch |
| 5 | +from PIL import Image |
| 6 | + |
| 7 | +try: |
| 8 | + from transformers import Qwen2Tokenizer, Qwen3Model |
| 9 | +except ImportError: |
| 10 | + Qwen2Tokenizer = None |
| 11 | + Qwen3Model = None |
| 12 | + |
| 13 | +from lightx2v_platform.base.global_var import AI_DEVICE |
| 14 | + |
| 15 | +torch_device_module = getattr(torch, AI_DEVICE) |
| 16 | + |
| 17 | +try: |
| 18 | + from diffusers.image_processor import VaeImageProcessor |
| 19 | +except ImportError: |
| 20 | + VaeImageProcessor = None |
| 21 | + |
| 22 | + |
| 23 | +class Qwen3Model_TextEncoder: |
| 24 | + def __init__(self, config): |
| 25 | + self.config = config |
| 26 | + self.tokenizer_max_length = 512 |
| 27 | + self.cpu_offload = config.get("qwen3_cpu_offload", config.get("cpu_offload", False)) |
| 28 | + self.dtype = torch.bfloat16 |
| 29 | + self.load() |
| 30 | + |
| 31 | + def load(self): |
| 32 | + self.text_encoder = Qwen3Model.from_pretrained(os.path.join(self.config["model_path"], "text_encoder"), torch_dtype=torch.bfloat16) |
| 33 | + if not self.cpu_offload: |
| 34 | + self.text_encoder = self.text_encoder.to(AI_DEVICE) |
| 35 | + |
| 36 | + self.tokenizer = Qwen2Tokenizer.from_pretrained(os.path.join(self.config["model_path"], "tokenizer")) |
| 37 | + |
| 38 | + if self.config["task"] == "i2i": |
| 39 | + self.image_processor = VaeImageProcessor(vae_scale_factor=self.config.get("vae_scale_factor", 8) * 2) |
| 40 | + |
| 41 | + def preprocess_image(self, image): |
| 42 | + if isinstance(image, Image.Image): |
| 43 | + preprocessed_image = self.image_processor.preprocess(image) |
| 44 | + elif isinstance(image, torch.Tensor): |
| 45 | + if image.dim() == 3: |
| 46 | + image = image.unsqueeze(0) |
| 47 | + preprocessed_image = image |
| 48 | + else: |
| 49 | + raise ValueError(f"Unsupported image type: {type(image)}") |
| 50 | + |
| 51 | + return preprocessed_image |
| 52 | + |
| 53 | + @torch.no_grad() |
| 54 | + def infer(self, prompt, image_list=None): |
| 55 | + if self.cpu_offload: |
| 56 | + self.text_encoder.to(AI_DEVICE) |
| 57 | + |
| 58 | + if isinstance(prompt, str): |
| 59 | + prompt = [prompt] |
| 60 | + |
| 61 | + for i, prompt_item in enumerate(prompt): |
| 62 | + messages = [{"role": "user", "content": prompt_item}] |
| 63 | + prompt_tokens = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, enable_thinking=True) |
| 64 | + prompt[i] = prompt_tokens |
| 65 | + |
| 66 | + text_inputs = self.tokenizer(prompt, max_length=self.tokenizer_max_length, padding="max_length", truncation=True, return_tensors="pt").to(AI_DEVICE) |
| 67 | + prompt_masks = text_inputs.attention_mask.bool().to(AI_DEVICE) |
| 68 | + |
| 69 | + prompt_embeds = self.text_encoder( |
| 70 | + input_ids=text_inputs.input_ids, |
| 71 | + attention_mask=prompt_masks, |
| 72 | + output_hidden_states=True, |
| 73 | + ).hidden_states[-2] |
| 74 | + embedding_list = [] |
| 75 | + for i in range(len(prompt_embeds)): |
| 76 | + extracted = prompt_embeds[i][prompt_masks[i]] |
| 77 | + embedding_list.append(extracted) |
| 78 | + image_info = {} |
| 79 | + if self.config["task"] == "i2i" and image_list is not None: |
| 80 | + vae_image_list = [] |
| 81 | + for image in image_list: |
| 82 | + preprocessed_image = self.preprocess_image(image) |
| 83 | + vae_image_list.append(preprocessed_image) |
| 84 | + |
| 85 | + image_info = { |
| 86 | + "vae_image_list": vae_image_list, |
| 87 | + } |
| 88 | + |
| 89 | + if self.cpu_offload: |
| 90 | + self.text_encoder.to(torch.device("cpu")) |
| 91 | + torch_device_module.empty_cache() |
| 92 | + gc.collect() |
| 93 | + |
| 94 | + return embedding_list, image_info |
0 commit comments