Skip to content

Commit 371cc4d

Browse files
committed
[upload] lsq configs for 4bit academic setting.
1 parent 3ac8928 commit 371cc4d

File tree

5 files changed

+175
-0
lines changed

5 files changed

+175
-0
lines changed
Lines changed: 35 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,35 @@
1+
arch: efficientnet-lite0 # model architecture
2+
model_path: # pretrained full-precision ckpt
3+
deploy: False
4+
evaluate: False
5+
pretrained: True
6+
resume: # resume qat ckpt
7+
8+
epochs: 120
9+
start_epoch: 0
10+
batch_size: 512 # 64 * 8 gpu
11+
optim: adam
12+
lr: 0.0001
13+
lr_scheduler: Cosine # T = 120_epochs
14+
weight_decay: 0.000
15+
16+
# The following configs in 'qparams' can be loaded as
17+
# extra_qparams["extra_qconfig_dict"] for preparation in academic setting
18+
quantization:
19+
enabled: True
20+
type: Academic
21+
qparams:
22+
w_observer: LSQObserver
23+
w_fakequantize: LearnableFakeQuantize
24+
w_qscheme:
25+
bit: 4
26+
symmetry: True
27+
per_channel: False
28+
pot_scale: False
29+
a_observer: LSQObserver
30+
a_fakequantize: LearnableFakeQuantize
31+
a_qscheme:
32+
bit: 4
33+
symmetry: False
34+
per_channel: False
35+
pot_scale: False
Lines changed: 35 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,35 @@
1+
arch: mobilenetv2 # model architecture
2+
model_path: # pretrained full-precision ckpt
3+
deploy: False
4+
evaluate: False
5+
pretrained: True
6+
resume: # resume qat ckpt
7+
8+
epochs: 72
9+
start_epoch: 0
10+
batch_size: 512 # 64 * 8 gpu
11+
optim: adam
12+
lr: 0.0004
13+
lr_scheduler: Cosine # T = 72_epochs
14+
weight_decay: 0.000
15+
16+
# The following configs in 'qparams' can be loaded as
17+
# extra_qparams["extra_qconfig_dict"] for preparation in academic setting
18+
quantization:
19+
enabled: True
20+
type: Academic
21+
qparams:
22+
w_observer: LSQObserver
23+
w_fakequantize: LearnableFakeQuantize
24+
w_qscheme:
25+
bit: 4
26+
symmetry: True
27+
per_channel: False
28+
pot_scale: False
29+
a_observer: LSQObserver
30+
a_fakequantize: LearnableFakeQuantize
31+
a_qscheme:
32+
bit: 4
33+
symmetry: False
34+
per_channel: False
35+
pot_scale: False
Lines changed: 35 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,35 @@
1+
arch: regnetx600m # model architecture
2+
model_path: # pretrained full-precision ckpt
3+
deploy: False
4+
evaluate: False
5+
pretrained: True
6+
resume: # resume qat ckpt
7+
8+
epochs: 60
9+
start_epoch: 0
10+
batch_size: 256 # 32 * 8 gpu
11+
optim: adam
12+
lr: 0.0002
13+
lr_scheduler: Cosine # T = 60_epochs
14+
weight_decay: 0.000
15+
16+
# The following configs in 'qparams' can be loaded as
17+
# extra_qparams["extra_qconfig_dict"] for preparation in academic setting
18+
quantization:
19+
enabled: True
20+
type: Academic
21+
qparams:
22+
w_observer: LSQObserver
23+
w_fakequantize: LearnableFakeQuantize
24+
w_qscheme:
25+
bit: 4
26+
symmetry: True
27+
per_channel: False
28+
pot_scale: False
29+
a_observer: LSQObserver
30+
a_fakequantize: LearnableFakeQuantize
31+
a_qscheme:
32+
bit: 4
33+
symmetry: False
34+
per_channel: False
35+
pot_scale: False
Lines changed: 35 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,35 @@
1+
arch: resnet18 # model architecture
2+
model_path: # pretrained full-precision ckpt
3+
deploy: False
4+
evaluate: False
5+
pretrained: True
6+
resume: # resume qat ckpt
7+
8+
epochs: 100
9+
start_epoch: 0
10+
batch_size: 512 # 128 * 4 gpu
11+
optim: adam
12+
lr: 0.00005
13+
lr_scheduler: Cosine # T = 100_epochs
14+
weight_decay: 0.000
15+
16+
# The following configs in 'qparams' can be loaded as
17+
# extra_qparams["extra_qconfig_dict"] for preparation in academic setting
18+
quantization:
19+
enabled: True
20+
type: Academic
21+
qparams:
22+
w_observer: LSQObserver
23+
w_fakequantize: LearnableFakeQuantize
24+
w_qscheme:
25+
bit: 4
26+
symmetry: True
27+
per_channel: False
28+
pot_scale: False
29+
a_observer: LSQObserver
30+
a_fakequantize: LearnableFakeQuantize
31+
a_qscheme:
32+
bit: 4
33+
symmetry: False
34+
per_channel: False
35+
pot_scale: False
Lines changed: 35 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,35 @@
1+
arch: resnet50 # model architecture
2+
model_path: # pretrained full-precision ckpt
3+
deploy: False
4+
evaluate: False
5+
pretrained: True
6+
resume: # resume qat ckpt
7+
8+
epochs: 150
9+
start_epoch: 0
10+
batch_size: 384 # 48 * 8 gpu
11+
optim: adam
12+
lr: 0.0001
13+
lr_scheduler: Cosine # T = 150_epochs
14+
weight_decay: 0.000
15+
16+
# The following configs in 'qparams' can be loaded as
17+
# extra_qparams["extra_qconfig_dict"] for preparation in academic setting
18+
quantization:
19+
enabled: True
20+
type: Academic
21+
qparams:
22+
w_observer: LSQObserver
23+
w_fakequantize: LearnableFakeQuantize
24+
w_qscheme:
25+
bit: 4
26+
symmetry: True
27+
per_channel: False
28+
pot_scale: False
29+
a_observer: LSQObserver
30+
a_fakequantize: LearnableFakeQuantize
31+
a_qscheme:
32+
bit: 4
33+
symmetry: False
34+
per_channel: False
35+
pot_scale: False

0 commit comments

Comments
 (0)