Skip to content

convert_qnniqat_linearbn(model, fused_node) function has a error which cause the QDQ model error for LinearBn1d operator #285

@Howard9112

Description

@Howard9112

@register_convert_function(qnniqat.LinearBn1d)
def convert_qnniqat_linearbn(model, fused_node):
modules = dict(model.named_modules())
fused_module = modules[fused_node.target]
# Create a Linear from FusedModule.
linear = torch.nn.Linear(fused_module.in_features, fused_module.out_features, fused_module.bias is not None)
linear.weight = fused_module.weight
if fused_module.bias is not None:
linear.bias = fused_module.bias
# Merge Linear + BN
fused_linear = fuse_linear_bn_eval(linear.eval(), fused_module.bn.eval())
# We need nn.qat.linear here to export weight quantize node.
linear.qconfig = fused_module.qconfig
linear = torch.nn.qat.Linear.from_float(linear)
# Attach weight fake quantize params.
linear.weight_fake_quant = fused_module.weight_fake_quant
linear_parent_name, linear_name = _parent_name(fused_node.target)
setattr(modules[linear_parent_name], linear_name, fused_linear)

The last line "setattr(modules[linear_parent_name], linear_name, fused_linear )" should be "setattr(modules[linear_parent_name], linear_name, linear)"

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions