Skip to content

Commit 798bb9f

Browse files
committed
Reactome added
1 parent 5915566 commit 798bb9f

18 files changed

+97
-8
lines changed

.DS_Store

0 Bytes
Binary file not shown.

06-web-tools.Rmd

Lines changed: 97 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -117,7 +117,6 @@ STRING generates multiple tabs as output, shown here:
117117

118118
<!-- ![](images/string-results-tabs.png){ width=100% } -->
119119
```{r, echo=FALSE, eval=TRUE, out.width="100%", fig.align = "center", fig.cap="Results tabs in STRING"}
120-
# out.width="50%",
121120
knitr::include_graphics("images/string-results-tabs.png")
122121
```
123122

@@ -131,7 +130,6 @@ The `Legend` tab offers a guide to the colors of nodes and edges, along with ann
131130

132131
<!-- ![Nodes and edges colour-coded](images/string-legend.png){ width=100% } -->
133132
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Nodes and edges colour-coded"}
134-
# out.width="50%",
135133
knitr::include_graphics("images/string-legend.png")
136134
```
137135

@@ -162,14 +160,12 @@ STRING visualises terms within each category using a bubble plot, effectively sh
162160

163161
<!-- ![Functional enrichment visualisation with STRING](images/string-enrichment_KEGG_sim0.7_graph_plus.png){ width=100% } -->
164162
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Functional enrichment visualisation with STRING"}
165-
# out.width="50%",
166163
knitr::include_graphics("images/string-enrichment_KEGG_sim0.7_graph_plus.png")
167164
```
168165

169166
Towards the the bottom of the `Analysis` page, one can change the background including adding one of their own.
170167
<!-- ![Statistical background](images/string-statistical-background.png){ width=100% } -->
171168
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Statistical background"}
172-
# out.width="50%",
173169
knitr::include_graphics("images/string-statistical-background.png")
174170
```
175171

@@ -191,7 +187,6 @@ The `Clusters` tab essentially provides three different types of clustering algo
191187

192188
<!-- ![](images/string-clusters.png) -->
193189
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Network clustering in STRING"}
194-
# out.width="50%",
195190
knitr::include_graphics("images/string-clusters.png")
196191
```
197192

@@ -212,7 +207,6 @@ MSigDB (Molecular Signatures Database) is a collection of gene sets for Gene Set
212207

213208
<!-- ![](images/GenePattern-Run.png) -->
214209
```{r, echo=FALSE, fig.align = "center", fig.cap="Navigate to Public Server"}
215-
# out.width="50%",
216210
knitr::include_graphics("images/GenePattern-Run.png")
217211
```
218212

@@ -225,7 +219,6 @@ knitr::include_graphics("images/GenePattern-Run.png")
225219

226220
<!-- ![](images/Browse_Modules_gsea.png){ width=100% } -->
227221
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Browse GSEA module in GenePattern"}
228-
# out.width="50%",
229222
knitr::include_graphics("images/Browse_Modules_gsea.png")
230223
```
231224

@@ -271,7 +264,6 @@ knitr::include_graphics("images/Browse_Modules_gsea.png")
271264
Once the job has been queued and successfully run, the output will be listd on the left panel under `Jobs` tab:
272265

273266
```{r, echo=FALSE, fig.align = "center", fig.cap="Job status in GenePattern"}
274-
# out.width="50%",
275267
knitr::include_graphics("images/GenePattern-Jobs.png")
276268
```
277269

@@ -358,3 +350,100 @@ Why might the HALLMARK_CHOLESTEROL_HOMEOSTASIS gene set be upregulated specifica
358350

359351
Reactome is an open-source database of curated biological pathways across species, offering pathway maps and enrichment tools to analyse gene lists in a pathway-focused context. It’s ideal for visualising data within established biochemical and cellular processes.
360352

353+
### Steps to perform ORA in Reactome:
354+
355+
- Hit the `Analysis Tools` tab
356+
357+
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Analysis in Reactome"}
358+
knitr::include_graphics("images/reactome-tabs.png")
359+
```
360+
361+
- Choose `Analyse gene list` from the left panel
362+
363+
```{r, echo=FALSE, out.width="20%", fig.align = "center", fig.cap="Analysis Tools in Reactome"}
364+
knitr::include_graphics("images/reactome-analysis-tools.png")
365+
```
366+
367+
- Upload list of features on the box or choose a file, hit continue
368+
369+
- Select prefered options:
370+
371+
\- Project to Human: This option will convert identifiers from non-human species into human equivalents, allowing you to analyse data across species.
372+
373+
\- Include interactors: This option integrates interactors from IntAct, a protein interaction database. Including interactors broadens the background network, potentially offering deeper insights.
374+
375+
- Hit Analyse!
376+
377+
378+
### Steps to perform GSA in Reactome:
379+
380+
- If `Analyse gene expression` was chosen instead, Reactome offers the following gene set analysis:
381+
382+
383+
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Ractome GSA "}
384+
knitr::include_graphics("images/reactome-gsea-methods.png")
385+
```
386+
387+
- Lets try CAMERA as it represents the `camera()` function of `limma` package in `R` for a gene set analysis.
388+
389+
- Choose TMM normalisation to ensure consistency with the input data used in other tools within our workshop.
390+
391+
- Select data type and provide input data
392+
393+
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Ractome GSA - data type"}
394+
knitr::include_graphics("images/reactome-gsea-select-data.png")
395+
```
396+
397+
- Annotate columns by adding extra info as follows:
398+
399+
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Pathway diagram "}
400+
knitr::include_graphics("images/reactome-gsea-add-column.png")
401+
```
402+
- Save dataset and Continue
403+
404+
- You can now browse the results
405+
406+
### Browse the Reactome results
407+
408+
Results can be interactively browsed using the reactome pathway or voronoi visualisation modes: <a target="_blank"><img src="images/reactome-modes.png" alt="Reactome Modes" style="height:35px; vertical-align:middle;"></a>
409+
410+
User can explore the pathway names listed in the table within the `Analysis` tab and they are displayed as popups on the pathway diagrams.
411+
412+
One can also select a pathway of interest by navigating through the left panel or by simply searching for the term in the search box.
413+
414+
The enriched table can be downloaded as shown below:
415+
416+
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Table of ORA with Reactome"}
417+
knitr::include_graphics("images/reactome-download-table.png")
418+
```
419+
420+
The diagram can be downloaded using this icons: <a target="_blank"><img src="images/reactome-download-diagram.png" alt="Download Diagram" style="height:35px; vertical-align:middle;"></a>
421+
422+
Here is a sample pathway diagram from Reactome GSA.
423+
424+
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Pathway diagram - GSA"}
425+
knitr::include_graphics("images/reactome-PathwaysOverview-expression-data.png")
426+
```
427+
428+
In case `ssGSEA` was selected, an overall output would look like below:
429+
430+
```{r, echo=FALSE, out.width="70%", fig.align = "center", fig.cap="Expression of top 30 pathways with ssGSEA"}
431+
knitr::include_graphics("images/reactome-ssGSEA.png")
432+
```
433+
434+
#### {-}
435+
436+
#### **Question ** {- .rationale}
437+
438+
When running FEA in Reactome, how do you prefer the analysis methods?
439+
440+
\- PADOG (Pathway Analysis with Down-weighting of Overlapping Genes)
441+
442+
\- CAMERA (Correlation Adjusted Mean Rank)
443+
444+
\- ssGSEA (Single Sample Gene Set Enrichment Analysis)
445+
446+
#### {-}
447+
448+
449+
2.85 MB
Loading
268 KB
Loading
241 KB
Loading

images/reactome-Reacfoam.jpg

7.62 MB
Loading

images/reactome-analysis-tools.png

45.6 KB
Loading
2.94 KB
Loading

images/reactome-download-table.png

98.8 KB
Loading
59 KB
Loading

0 commit comments

Comments
 (0)