Skip to content

Commit db23abd

Browse files
committed
figures presented by knitr::include_graphics function
1 parent 22f2b7e commit db23abd

File tree

1 file changed

+49
-9
lines changed

1 file changed

+49
-9
lines changed

06-web-tools.Rmd

Lines changed: 49 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -115,7 +115,11 @@ NOTE: In cases where long list of features is provided, STRING may chnage some o
115115

116116
STRING generates multiple tabs as output, shown here:
117117

118-
![](images/string-results-tabs.png){ width=100% }
118+
<!-- ![](images/string-results-tabs.png){ width=100% } -->
119+
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Results tabs in STRING"}
120+
# out.width="50%",
121+
knitr::include_graphics("images/string-results-tabs.png")
122+
```
119123

120124
#### Viewers
121125

@@ -125,7 +129,11 @@ Under the `Viewers` tab, various visualisation layouts are available, with the N
125129

126130
The `Legend` tab offers a guide to the colors of nodes and edges, along with annotations for each individual query in the input list.
127131

128-
![Nodes and edges colour-coded](images/string-legend.png){ width=100% }
132+
<!-- ![Nodes and edges colour-coded](images/string-legend.png){ width=100% } -->
133+
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Nodes and edges colour-coded"}
134+
# out.width="50%",
135+
knitr::include_graphics("images/string-legend.png")
136+
```
129137

130138
#### Settings
131139

@@ -152,10 +160,18 @@ This measure describes how significant the enrichment is. Shown are p-values cor
152160

153161
STRING visualises terms within each category using a bubble plot, effectively showcasing the significance and size of enriched terms. Additionally, it renders groups of related terms based on a user-defined similarity level, allowing users to identify clusters of functionally related terms within the data. This helps in interpreting complex enrichment results and highlighting key biological processes or pathways that are closely associated.
154162

155-
![Functional enrichment visualisation with STRING](images/string-enrichment_KEGG_sim0.7_graph_plus.png){ width=100% }
163+
<!-- ![Functional enrichment visualisation with STRING](images/string-enrichment_KEGG_sim0.7_graph_plus.png){ width=100% } -->
164+
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Functional enrichment visualisation with STRING"}
165+
# out.width="50%",
166+
knitr::include_graphics("images/string-enrichment_KEGG_sim0.7_graph_plus.png")
167+
```
156168

157169
Towards the the bottom of the `Analysis` page, one can change the background including adding one of their own.
158-
![Statistical background](images/string-statistical-background.png){ width=100% }
170+
<!-- ![Statistical background](images/string-statistical-background.png){ width=100% } -->
171+
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Statistical background"}
172+
# out.width="50%",
173+
knitr::include_graphics("images/string-statistical-background.png")
174+
```
159175

160176
Finally the enriched terms can be downloaded at the end of the `Analysis` page, either individually per category or all enriched terms together.
161177

@@ -173,7 +189,11 @@ The `Clusters` tab essentially provides three different types of clustering algo
173189

174190
- DBSCAN clustering: is a density-based algorithm that groups points closely packed together while marking points in low-density regions as outliers or noise
175191

176-
![](images/string-clusters.png)
192+
<!-- ![](images/string-clusters.png) -->
193+
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Network clustering in STRING"}
194+
# out.width="50%",
195+
knitr::include_graphics("images/string-clusters.png")
196+
```
177197

178198
Clusters can be downloaded in `.tsv` format.
179199

@@ -190,15 +210,25 @@ MSigDB (Molecular Signatures Database) is a collection of gene sets for Gene Set
190210

191211
- Click on the Run button and then the Public Server
192212

193-
![](images/GenePattern-Run.png)
213+
<!-- ![](images/GenePattern-Run.png) -->
214+
```{r, echo=FALSE, fig.align = "center", fig.cap="Navigate to Public Server"}
215+
# out.width="50%",
216+
knitr::include_graphics("images/GenePattern-Run.png")
217+
```
218+
194219

195220
- Sign in to GenePattern or Enter as Guest
196221

197222
- Under `Modules` tab hit `Browse Modules`
198223

199224
- Find gsea in the Browse Modules by Category page and hit GSEA
200225

201-
![](images/Browse_Modules_gsea.png){ width=100% }
226+
<!-- ![](images/Browse_Modules_gsea.png){ width=100% } -->
227+
```{r, echo=FALSE, out.width="100%", fig.align = "center", fig.cap="Browse GSEA module in GenePattern"}
228+
# out.width="50%",
229+
knitr::include_graphics("images/Browse_Modules_gsea.png")
230+
```
231+
202232

203233
### Steps to Perform GSEA:
204234
<!-- https://cloud.genepattern.org/gp/pages/index.jsf?jobid=613752&openVisualizers=true&openNewWindow=false -->
@@ -297,6 +327,9 @@ data <- data.frame(
297327
kable(data, caption = "Summary of GSEA Results for REACTOME_FRS_MEDIATED_FGFR2_SIGNALING Gene Set")
298328
```
299329

330+
<!-- HALLMARK_CHOLESTEROL_HOMEOSTASIS -->
331+
<!-- 68 0.59 1.49 0.012 0.059 0.201 4015 tags=60%, list=28%, signal=83% -->
332+
300333
The leading edge column has three values:
301334

302335
- tags: 38% of the genes in the gene set are key to the enrichment result.
@@ -306,12 +339,19 @@ The leading edge column has three values:
306339

307340
#### **Challenge:** How different ranking metrics impact the output? {- .challenge}
308341

309-
Run GSEA analysis using Hallmark gene sets with two metrics (SignaltoNoise and tTest). How do these differ in reporting enriched terms?
342+
Run GSEA analysis using Hallmark gene sets with two metrics (tTest and Ratio_of_Classes). What are the upregulated terms (FDR < 0.1) in the `Diff` class, based on the t-test and Ratio of Classes metrics?
310343

311344
#### **Question ** {- .rationale}
312345

313-
Which gene set category (or categories) offers the most valuable insights for a cell differentiation experiment?
346+
Why might the HALLMARK_CHOLESTEROL_HOMEOSTASIS gene set be upregulated specifically in the differentiation condition of SH-SY5Y cells in [Pezzini, et al 2016](https://pubmed.ncbi.nlm.nih.gov/27422411/) experiment?
314347

348+
<details>
349+
<summary>Show</summary>
350+
- Relevance: Cholesterol is essential for neuronal function and membrane fluidity, particularly in processes like axonal growth and synapse formation. Neurons have a high demand for cholesterol, especially during differentiation when they extend axons and dendrites.
351+
- Possible Insight: Upregulation of genes in this set could signify that differentiating cells are actively producing or transporting cholesterol to support membrane synthesis and cellular remodeling required for mature neuronal structures.
352+
</details>
353+
354+
#### {-}
315355

316356
## Reactome
317357
Reactome is an open-source database of curated biological pathways across species, offering pathway maps and enrichment tools to analyse gene lists in a pathway-focused context. It’s ideal for visualising data within established biochemical and cellular processes.

0 commit comments

Comments
 (0)