|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "## Mean [WIP]\n", |
| 8 | + "\n", |
| 9 | + "Mean also referred to as the arithmetic mean is a measure of the central tendency of a set of numbers. You can calculate the mean of a set of numbers as follows:\n", |
| 10 | + "\n", |
| 11 | + "\n", |
| 12 | + "$$\n", |
| 13 | + "m=\\frac{\\text { sum of the terms }}{\\text { number of terms }}\n", |
| 14 | + "$$\n", |
| 15 | + "\n", |
| 16 | + "or\n", |
| 17 | + "\n", |
| 18 | + "more formally:\n", |
| 19 | + "\n", |
| 20 | + "$$\n", |
| 21 | + "\\bar{x}=\\frac{1}{n}\\left(\\sum_{i=1}^{n} x_{i}\\right)=\\frac{x_{1}+x_{2}+\\cdots+x_{n}}{n}\n", |
| 22 | + "$$\n" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "code", |
| 27 | + "execution_count": 4, |
| 28 | + "metadata": {}, |
| 29 | + "outputs": [ |
| 30 | + { |
| 31 | + "name": "stdout", |
| 32 | + "output_type": "stream", |
| 33 | + "text": [ |
| 34 | + "Collecting torch\n", |
| 35 | + " Downloading torch-2.3.0-cp38-cp38-manylinux1_x86_64.whl.metadata (26 kB)\n", |
| 36 | + "Collecting filelock (from torch)\n", |
| 37 | + " Downloading filelock-3.14.0-py3-none-any.whl.metadata (2.8 kB)\n", |
| 38 | + "Collecting typing-extensions>=4.8.0 (from torch)\n", |
| 39 | + " Downloading typing_extensions-4.12.0-py3-none-any.whl.metadata (3.0 kB)\n", |
| 40 | + "Collecting sympy (from torch)\n", |
| 41 | + " Downloading sympy-1.12-py3-none-any.whl.metadata (12 kB)\n", |
| 42 | + "Collecting networkx (from torch)\n", |
| 43 | + " Downloading networkx-3.1-py3-none-any.whl.metadata (5.3 kB)\n", |
| 44 | + "Collecting jinja2 (from torch)\n", |
| 45 | + " Downloading jinja2-3.1.4-py3-none-any.whl.metadata (2.6 kB)\n", |
| 46 | + "Collecting fsspec (from torch)\n", |
| 47 | + " Downloading fsspec-2024.5.0-py3-none-any.whl.metadata (11 kB)\n", |
| 48 | + "Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch)\n", |
| 49 | + " Downloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n", |
| 50 | + "Collecting nvidia-cuda-runtime-cu12==12.1.105 (from torch)\n", |
| 51 | + " Downloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n", |
| 52 | + "Collecting nvidia-cuda-cupti-cu12==12.1.105 (from torch)\n", |
| 53 | + " Downloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n", |
| 54 | + "Collecting nvidia-cudnn-cu12==8.9.2.26 (from torch)\n", |
| 55 | + " Downloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n", |
| 56 | + "Collecting nvidia-cublas-cu12==12.1.3.1 (from torch)\n", |
| 57 | + " Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n", |
| 58 | + "Collecting nvidia-cufft-cu12==11.0.2.54 (from torch)\n", |
| 59 | + " Downloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n", |
| 60 | + "Collecting nvidia-curand-cu12==10.3.2.106 (from torch)\n", |
| 61 | + " Downloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n", |
| 62 | + "Collecting nvidia-cusolver-cu12==11.4.5.107 (from torch)\n", |
| 63 | + " Downloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n", |
| 64 | + "Collecting nvidia-cusparse-cu12==12.1.0.106 (from torch)\n", |
| 65 | + " Downloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n", |
| 66 | + "Collecting nvidia-nccl-cu12==2.20.5 (from torch)\n", |
| 67 | + " Downloading nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl.metadata (1.8 kB)\n", |
| 68 | + "Collecting nvidia-nvtx-cu12==12.1.105 (from torch)\n", |
| 69 | + " Downloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.7 kB)\n", |
| 70 | + "Collecting triton==2.3.0 (from torch)\n", |
| 71 | + " Downloading triton-2.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.4 kB)\n", |
| 72 | + "Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch)\n", |
| 73 | + " Downloading nvidia_nvjitlink_cu12-12.5.40-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", |
| 74 | + "Requirement already satisfied: MarkupSafe>=2.0 in /home/ibra/Workspace/pull-push/.venv/lib/python3.8/site-packages (from jinja2->torch) (2.1.5)\n", |
| 75 | + "Collecting mpmath>=0.19 (from sympy->torch)\n", |
| 76 | + " Downloading mpmath-1.3.0-py3-none-any.whl.metadata (8.6 kB)\n", |
| 77 | + "Downloading torch-2.3.0-cp38-cp38-manylinux1_x86_64.whl (779.1 MB)\n", |
| 78 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m779.1/779.1 MB\u001b[0m \u001b[31m884.9 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m0:01\u001b[0m00:14\u001b[0mm\n", |
| 79 | + "\u001b[?25hDownloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n", |
| 80 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m410.6/410.6 MB\u001b[0m \u001b[31m1.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:08\u001b[0m\n", |
| 81 | + "\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n", |
| 82 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.1/14.1 MB\u001b[0m \u001b[31m1.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", |
| 83 | + "\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n", |
| 84 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m23.7/23.7 MB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", |
| 85 | + "\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n", |
| 86 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m823.6/823.6 kB\u001b[0m \u001b[31m1.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", |
| 87 | + "\u001b[?25hDownloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n", |
| 88 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m731.7/731.7 MB\u001b[0m \u001b[31m928.8 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m0:01\u001b[0m00:12\u001b[0mm\n", |
| 89 | + "\u001b[?25hDownloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n", |
| 90 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m121.6/121.6 MB\u001b[0m \u001b[31m1.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:02\u001b[0m\n", |
| 91 | + "\u001b[?25hDownloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n", |
| 92 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.5/56.5 MB\u001b[0m \u001b[31m1.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", |
| 93 | + "\u001b[?25hDownloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n", |
| 94 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.2/124.2 MB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:02\u001b[0m\n", |
| 95 | + "\u001b[?25hDownloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n", |
| 96 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m196.0/196.0 MB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:03\u001b[0m\n", |
| 97 | + "\u001b[?25hDownloading nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl (176.2 MB)\n", |
| 98 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m176.2/176.2 MB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:03\u001b[0m\n", |
| 99 | + "\u001b[?25hDownloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n", |
| 100 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m99.1/99.1 kB\u001b[0m \u001b[31m1.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", |
| 101 | + "\u001b[?25hDownloading triton-2.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (168.0 MB)\n", |
| 102 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m168.0/168.0 MB\u001b[0m \u001b[31m1.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:03\u001b[0m\n", |
| 103 | + "\u001b[?25hDownloading typing_extensions-4.12.0-py3-none-any.whl (37 kB)\n", |
| 104 | + "Downloading filelock-3.14.0-py3-none-any.whl (12 kB)\n", |
| 105 | + "Downloading fsspec-2024.5.0-py3-none-any.whl (316 kB)\n", |
| 106 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m316.1/316.1 kB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", |
| 107 | + "\u001b[?25hDownloading jinja2-3.1.4-py3-none-any.whl (133 kB)\n", |
| 108 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m133.3/133.3 kB\u001b[0m \u001b[31m940.4 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\u001b[36m0:00:01\u001b[0m\n", |
| 109 | + "\u001b[?25hDownloading networkx-3.1-py3-none-any.whl (2.1 MB)\n", |
| 110 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m1.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", |
| 111 | + "\u001b[?25hDownloading sympy-1.12-py3-none-any.whl (5.7 MB)\n", |
| 112 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.7/5.7 MB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", |
| 113 | + "\u001b[?25hDownloading mpmath-1.3.0-py3-none-any.whl (536 kB)\n", |
| 114 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m536.2/536.2 kB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", |
| 115 | + "\u001b[?25hDownloading nvidia_nvjitlink_cu12-12.5.40-py3-none-manylinux2014_x86_64.whl (21.3 MB)\n", |
| 116 | + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.3/21.3 MB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", |
| 117 | + "\u001b[?25hInstalling collected packages: mpmath, typing-extensions, sympy, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, networkx, jinja2, fsspec, filelock, triton, nvidia-cusparse-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12, torch\n", |
| 118 | + " Attempting uninstall: typing-extensions\n", |
| 119 | + " Found existing installation: typing_extensions 4.5.0\n", |
| 120 | + " Uninstalling typing_extensions-4.5.0:\n", |
| 121 | + " Successfully uninstalled typing_extensions-4.5.0\n", |
| 122 | + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", |
| 123 | + "tensorflow 2.13.1 requires keras<2.14,>=2.13.1, but you have keras 2.15.0 which is incompatible.\n", |
| 124 | + "tensorflow 2.13.1 requires typing-extensions<4.6.0,>=3.6.6, but you have typing-extensions 4.12.0 which is incompatible.\u001b[0m\u001b[31m\n", |
| 125 | + "\u001b[0mSuccessfully installed filelock-3.14.0 fsspec-2024.5.0 jinja2-3.1.4 mpmath-1.3.0 networkx-3.1 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.20.5 nvidia-nvjitlink-cu12-12.5.40 nvidia-nvtx-cu12-12.1.105 sympy-1.12 torch-2.3.0 triton-2.3.0 typing-extensions-4.12.0\n", |
| 126 | + "Note: you may need to restart the kernel to use updated packages.\n" |
| 127 | + ] |
| 128 | + } |
| 129 | + ], |
| 130 | + "source": [ |
| 131 | + "#Uncomment to install pytorch library on python environment:\n", |
| 132 | + "# pip install torch\n" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "code", |
| 137 | + "execution_count": 5, |
| 138 | + "metadata": {}, |
| 139 | + "outputs": [ |
| 140 | + { |
| 141 | + "name": "stdout", |
| 142 | + "output_type": "stream", |
| 143 | + "text": [ |
| 144 | + "tensor([[-1.2116, 1.0368, -0.4845],\n", |
| 145 | + " [-0.4369, -1.0795, 1.1041],\n", |
| 146 | + " [-1.2888, 0.3706, 0.2939],\n", |
| 147 | + " [-1.2139, -1.5166, 0.7118],\n", |
| 148 | + " [ 0.1386, 0.0818, -1.5839]])\n" |
| 149 | + ] |
| 150 | + }, |
| 151 | + { |
| 152 | + "data": { |
| 153 | + "text/plain": [ |
| 154 | + "tensor([[-0.2198],\n", |
| 155 | + " [-0.1374],\n", |
| 156 | + " [-0.2081],\n", |
| 157 | + " [-0.6729],\n", |
| 158 | + " [-0.4545]])" |
| 159 | + ] |
| 160 | + }, |
| 161 | + "execution_count": 5, |
| 162 | + "metadata": {}, |
| 163 | + "output_type": "execute_result" |
| 164 | + } |
| 165 | + ], |
| 166 | + "source": [ |
| 167 | + "import torch\n", |
| 168 | + "x = torch.randn(5, 3)\n", |
| 169 | + "print(x)\n", |
| 170 | + "\n", |
| 171 | + "# use keepdim=True to preserve dimension\n", |
| 172 | + "x.mean(-1, keepdim=True)" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "code", |
| 177 | + "execution_count": 6, |
| 178 | + "metadata": {}, |
| 179 | + "outputs": [ |
| 180 | + { |
| 181 | + "name": "stdout", |
| 182 | + "output_type": "stream", |
| 183 | + "text": [ |
| 184 | + "tensor(42.)\n", |
| 185 | + "tensor(42.)\n" |
| 186 | + ] |
| 187 | + } |
| 188 | + ], |
| 189 | + "source": [ |
| 190 | + "# Example 2:\n", |
| 191 | + "import torch\n", |
| 192 | + "\n", |
| 193 | + "x = torch.Tensor([4, 36, 45, 50, 75])\n", |
| 194 | + "\n", |
| 195 | + "print(torch.sum(x) / 5) # using sum and manual division\n", |
| 196 | + "print(torch.mean(x)) # using mean function" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "cell_type": "markdown", |
| 201 | + "metadata": {}, |
| 202 | + "source": [ |
| 203 | + "### References\n", |
| 204 | + "\n", |
| 205 | + "- [Wikipedia](https://en.wikipedia.org/wiki/Mean)\n", |
| 206 | + "- [Basics of Statistics for ML Engineer](https://medium.com/technology-nineleaps/basics-of-statistics-for-machine-learning-engineers-bf2887ac716c)" |
| 207 | + ] |
| 208 | + } |
| 209 | + ], |
| 210 | + "metadata": { |
| 211 | + "kernelspec": { |
| 212 | + "display_name": "Python 3.9.12 ('base')", |
| 213 | + "language": "python", |
| 214 | + "name": "python3" |
| 215 | + }, |
| 216 | + "language_info": { |
| 217 | + "codemirror_mode": { |
| 218 | + "name": "ipython", |
| 219 | + "version": 3 |
| 220 | + }, |
| 221 | + "file_extension": ".py", |
| 222 | + "mimetype": "text/x-python", |
| 223 | + "name": "python", |
| 224 | + "nbconvert_exporter": "python", |
| 225 | + "pygments_lexer": "ipython3", |
| 226 | + "version": "3.8.5" |
| 227 | + }, |
| 228 | + "orig_nbformat": 4, |
| 229 | + "vscode": { |
| 230 | + "interpreter": { |
| 231 | + "hash": "d4d1e4263499bec80672ea0156c357c1ee493ec2b1c70f0acce89fc37c4a6abe" |
| 232 | + } |
| 233 | + } |
| 234 | + }, |
| 235 | + "nbformat": 4, |
| 236 | + "nbformat_minor": 2 |
| 237 | +} |
0 commit comments