|
| 1 | +import streamlit as st |
| 2 | +import numpy as np |
| 3 | +import pandas as pd |
| 4 | +from sklearn.cluster import KMeans |
| 5 | +from sklearn.model_selection import train_test_split |
| 6 | +from sklearn.linear_model import LogisticRegression |
| 7 | +from sklearn.metrics import classification_report |
| 8 | +data = pd.read_excel("data.xlsx") |
| 9 | +y = data['label'] |
| 10 | +X = data.drop(["label"], axis=1) |
| 11 | +X_train, X_test, y_train, y_test = train_test_split( |
| 12 | + X, y, test_size=0.3, random_state=0) |
| 13 | +lr = LogisticRegression() |
| 14 | +lr.fit(X_train, y_train) |
| 15 | + |
| 16 | + |
| 17 | +def predict_crop(input_data): |
| 18 | + crop_label = lr.predict(input_data) |
| 19 | + return crop_label[0] |
| 20 | + |
| 21 | + |
| 22 | +def main(): |
| 23 | + st.title("Agriculture Optimisation App") |
| 24 | + st.write("Enter the parameter values to predict the crop label:") |
| 25 | + |
| 26 | + n = st.number_input("N", value=0.0) |
| 27 | + p = st.number_input("P", value=0.0) |
| 28 | + k = st.number_input("K", value=0.0) |
| 29 | + temperature = st.number_input("Temperature", value=0.0) |
| 30 | + humidity = st.number_input("Humidity", value=0.0) |
| 31 | + ph = st.number_input("pH", value=0.0) |
| 32 | + rainfall = st.number_input("Rainfall", value=0.0) |
| 33 | + |
| 34 | + input_data = np.array([[n, p, k, temperature, humidity, ph, rainfall]]) |
| 35 | + |
| 36 | + crop_label = predict_crop(input_data) |
| 37 | + |
| 38 | + st.subheader("Predicted Crop Label:") |
| 39 | + st.write(crop_label) |
| 40 | + |
| 41 | + |
| 42 | +if __name__ == '__main__': |
| 43 | + main() |
0 commit comments