@@ -10,7 +10,10 @@ The model code for this exhibit can be found
1010
1111
1212## Predictive Coding with NGC-Learn
13+ <!--
1314-----------------------------------------------------------------------------------------------------
15+ -->
16+ ---
1417
1518### PC model for Reconstruction Task
1619
@@ -22,12 +25,14 @@ on the task.
22252 . ** Create synaptic component**
23263 . ** Wire components** – define how the components connect and interact with each others.
2427
25-
28+ <!--
2629-----------------------------------------------------------------------------------------------------
30+ -->
31+ ---
2732
2833<!-- ################################################################################ -->
2934
30- ### 1- Make Neural component :
35+ ### 1: Make Neural Component(s) :
3136
3237<!-- ################################################################################ -->
3338
@@ -75,7 +80,7 @@ e0 = GaussianErrorCell("e0", n_units=in_dim) ## e0_size == z0_size (x s
7580
7681<!-- ################################################################################ -->
7782
78- ### 2- Make Synaptic component :
83+ ### 2: Make Synaptic Component(s) :
7984
8085<!-- ################################################################################ -->
8186
@@ -147,7 +152,7 @@ W1 = BackwardSynapse("W1",
147152<br >
148153<!-- ----------------------------------------------------------------------------------------------------- -->
149154
150- ### Wire Component:
155+ ### Wire the Component(s) Together :
151156
152157
153158The signal pathway is according to Rao & Ballard 1999.
@@ -156,7 +161,7 @@ Corrected prediction comes back from top to the down in the backward pass.
156161
157162
158163``` python
159- # ######## feedback (Top-down) #########
164+ # ######## Feedback pathways (Top-down) #########
160165 # ## actual neural activation
161166 e2.target << z2.z
162167 e1.target << z1.z
@@ -177,7 +182,7 @@ Corrected prediction comes back from top to the down in the backward pass.
177182
178183
179184``` python
180- # ######## forward (Bottom-up) #########
185+ # ######## Forward propagation (Bottom-up) #########
181186 # # feedforward the errors via synapses
182187 E3.inputs << e2.dmu
183188 E2.inputs << e1.dmu
@@ -197,7 +202,7 @@ Corrected prediction comes back from top to the down in the backward pass.
197202 W2.pre << z2.zF
198203 W1.pre << z1.zF
199204
200- # # Post Synaptic residual error
205+ # # Post-synaptic residual error
201206 W3.post << e2.dmu
202207 W2.post << e1.dmu
203208 W1.post << e0.dmu
@@ -210,7 +215,7 @@ Corrected prediction comes back from top to the down in the backward pass.
210215<br >
211216<!-- ----------------------------------------------------------------------------------------------------- -->
212217
213- ##### Process Dynamics:
218+ #### Specifying the Process Dynamics:
214219
215220
216221``` python
@@ -246,7 +251,7 @@ Corrected prediction comes back from top to the down in the backward pass.
246251<!-- ----------------------------------------------------------------------------------------------------- -->
247252
248253
249- ### Train PC model for reconstructing the patched image
254+ ### Train the PC model for Reconstructing the "Patched" Image
250255
251256<img src =" ../images/museum/hgpc/patch_input.png " width =" 300 " align =" right " />
252257
0 commit comments