|
| 1 | +# inference/tests/test_classification_utils.py |
| 2 | +# docker-compose -f local.yml run --rm django pytest inference/tests/test_classification_utils.py |
| 3 | + |
| 4 | +from unittest.mock import Mock, patch |
| 5 | + |
| 6 | +import pytest |
| 7 | + |
| 8 | +from inference.utils.classification_utils import ( |
| 9 | + map_classification_to_tdamm_tags, |
| 10 | + update_url_with_classification_results, |
| 11 | +) |
| 12 | + |
| 13 | + |
| 14 | +class TestMapClassificationToTDAMMTags: |
| 15 | + """Tests for the map_classification_to_tdamm_tags function""" |
| 16 | + |
| 17 | + def test_basic_mapping(self): |
| 18 | + """Test basic mapping of classification results to TDAMM tags""" |
| 19 | + classification_results = {"Optical": 0.9, "Infrared": 0.85, "X-rays": 0.95} |
| 20 | + |
| 21 | + expected_tags = [ |
| 22 | + "MMA_M_EM_O", # Optical |
| 23 | + "MMA_M_EM_I", # Infrared |
| 24 | + "MMA_M_EM_X", # X-rays |
| 25 | + ] |
| 26 | + |
| 27 | + actual_tags = map_classification_to_tdamm_tags(classification_results, threshold=0.8) |
| 28 | + assert sorted(actual_tags) == sorted(expected_tags) |
| 29 | + |
| 30 | + def test_threshold_handling(self): |
| 31 | + """Test that only tags above the threshold are included""" |
| 32 | + classification_results = { |
| 33 | + "Optical": 0.9, # Above threshold |
| 34 | + "Infrared": 0.55, # Below threshold |
| 35 | + "X-rays": 0.7, # Below threshold |
| 36 | + "Radio": 0.85, # Above threshold |
| 37 | + } |
| 38 | + |
| 39 | + expected_tags = [ |
| 40 | + "MMA_M_EM_O", # Optical |
| 41 | + "MMA_M_EM_R", # Radio |
| 42 | + ] |
| 43 | + |
| 44 | + actual_tags = map_classification_to_tdamm_tags(classification_results, threshold=0.8) |
| 45 | + assert sorted(actual_tags) == sorted(expected_tags) |
| 46 | + |
| 47 | + def test_case_insensitivity(self): |
| 48 | + """Test that the mapping works regardless of case""" |
| 49 | + classification_results = { |
| 50 | + "optical": 0.9, # Lowercase |
| 51 | + "INFRARED": 0.85, # Uppercase |
| 52 | + "X-Rays": 0.95, # Mixed case |
| 53 | + } |
| 54 | + |
| 55 | + expected_tags = [ |
| 56 | + "MMA_M_EM_O", # Optical |
| 57 | + "MMA_M_EM_I", # Infrared |
| 58 | + "MMA_M_EM_X", # X-rays |
| 59 | + ] |
| 60 | + |
| 61 | + actual_tags = map_classification_to_tdamm_tags(classification_results, threshold=0.8) |
| 62 | + assert sorted(actual_tags) == sorted(expected_tags) |
| 63 | + |
| 64 | + def test_special_cases(self): |
| 65 | + """Test special case mappings""" |
| 66 | + classification_results = { |
| 67 | + "non-TDAMM": 0.95, |
| 68 | + "supernovae": 0.9, |
| 69 | + } |
| 70 | + |
| 71 | + expected_tags = [ |
| 72 | + "NOT_TDAMM", |
| 73 | + "MMA_S_SU", |
| 74 | + ] |
| 75 | + |
| 76 | + actual_tags = map_classification_to_tdamm_tags(classification_results, threshold=0.8) |
| 77 | + assert sorted(actual_tags) == sorted(expected_tags) |
| 78 | + |
| 79 | + def test_string_confidence_values(self): |
| 80 | + """Test handling string confidence values""" |
| 81 | + classification_results = {"Optical": "0.9", "Infrared": 0.85, "X-rays": "0.95"} # String # Float # String |
| 82 | + |
| 83 | + expected_tags = [ |
| 84 | + "MMA_M_EM_O", # Optical |
| 85 | + "MMA_M_EM_I", # Infrared |
| 86 | + "MMA_M_EM_X", # X-rays |
| 87 | + ] |
| 88 | + |
| 89 | + actual_tags = map_classification_to_tdamm_tags(classification_results, threshold=0.8) |
| 90 | + assert sorted(actual_tags) == sorted(expected_tags) |
| 91 | + |
| 92 | + def test_invalid_confidence_values(self): |
| 93 | + """Test handling invalid confidence values""" |
| 94 | + classification_results = {"Optical": 0.9, "Infrared": "not_a_number", "X-rays": 0.95} |
| 95 | + |
| 96 | + expected_tags = [ |
| 97 | + "MMA_M_EM_O", # Optical |
| 98 | + "MMA_M_EM_X", # X-rays |
| 99 | + ] |
| 100 | + |
| 101 | + actual_tags = map_classification_to_tdamm_tags(classification_results, threshold=0.8) |
| 102 | + assert sorted(actual_tags) == sorted(expected_tags) |
| 103 | + |
| 104 | + def test_empty_classification_results(self): |
| 105 | + """Test handling of empty classification results""" |
| 106 | + classification_results = {} |
| 107 | + |
| 108 | + actual_tags = map_classification_to_tdamm_tags(classification_results) |
| 109 | + assert actual_tags == [] |
| 110 | + |
| 111 | + def test_complex_mappings(self): |
| 112 | + """Test more complex mappings with specific TDAMM categories""" |
| 113 | + classification_results = { |
| 114 | + "Binary Black Holes": 0.9, |
| 115 | + "Neutron Star-Black Hole": 0.85, |
| 116 | + "Gamma-ray Bursts": 0.95, |
| 117 | + "Fast Blue Optical Transients": 0.8, |
| 118 | + } |
| 119 | + |
| 120 | + expected_tags = [ |
| 121 | + "MMA_O_BI_BBH", # Binary Black Holes |
| 122 | + "MMA_O_BI_N", # Neutron Star-Black Hole |
| 123 | + "MMA_S_G", # Gamma-ray Bursts |
| 124 | + "MMA_S_FBOT", # Fast Blue Optical Transients |
| 125 | + ] |
| 126 | + |
| 127 | + actual_tags = map_classification_to_tdamm_tags(classification_results, threshold=0.8) |
| 128 | + assert sorted(actual_tags) == sorted(expected_tags) |
| 129 | + |
| 130 | + @patch("django.conf.settings.TDAMM_CLASSIFICATION_THRESHOLD", 0.75) |
| 131 | + def test_default_threshold_from_settings(self): |
| 132 | + """Test using the default threshold from settings""" |
| 133 | + classification_results = {"Optical": 0.7, "Infrared": 0.8, "X-rays": 0.9} |
| 134 | + |
| 135 | + # With settings threshold of 0.75, Infrared and X-rays should be included |
| 136 | + expected_tags = ["MMA_M_EM_I", "MMA_M_EM_X"] |
| 137 | + actual_tags = map_classification_to_tdamm_tags(classification_results) # No threshold provided |
| 138 | + |
| 139 | + assert sorted(actual_tags) == sorted(expected_tags) |
| 140 | + |
| 141 | + |
| 142 | +class TestUpdateUrlWithClassificationResults: |
| 143 | + """Tests for the update_url_with_classification_results function""" |
| 144 | + |
| 145 | + @pytest.fixture |
| 146 | + def mock_url(self): |
| 147 | + """Create a mock URL object for testing""" |
| 148 | + url = Mock() |
| 149 | + url.tdamm_tag_ml = None |
| 150 | + url.save = Mock() |
| 151 | + return url |
| 152 | + |
| 153 | + @patch("inference.utils.classification_utils.map_classification_to_tdamm_tags") |
| 154 | + def test_update_url_properly_calls_mapping(self, mock_map_function, mock_url): |
| 155 | + """Test that URL objects are correctly updated with TDAMM tags""" |
| 156 | + # Set up mock return value |
| 157 | + mock_tdamm_tags = ["MMA_M_EM_O", "MMA_M_EM_X"] |
| 158 | + mock_map_function.return_value = mock_tdamm_tags |
| 159 | + |
| 160 | + # Test data |
| 161 | + classification_results = {"Optical": 0.9, "X-rays": 0.85} |
| 162 | + |
| 163 | + # Call the function |
| 164 | + result = update_url_with_classification_results(mock_url, classification_results) |
| 165 | + |
| 166 | + # Verify map_classification_to_tdamm_tags was called properly |
| 167 | + mock_map_function.assert_called_once_with(classification_results) |
| 168 | + |
| 169 | + # Verify URL object was updated correctly |
| 170 | + assert mock_url.tdamm_tag_ml == mock_tdamm_tags |
| 171 | + mock_url.save.assert_called_once_with(update_fields=["tdamm_tag_ml"]) |
| 172 | + |
| 173 | + # Verify return value |
| 174 | + assert result == mock_tdamm_tags |
| 175 | + |
| 176 | + @patch("inference.utils.classification_utils.map_classification_to_tdamm_tags") |
| 177 | + def test_threshold_parameter_behavior(self, mock_map_function, mock_url): |
| 178 | + """Test how threshold parameter is handled""" |
| 179 | + mock_tdamm_tags = ["MMA_M_EM_O"] |
| 180 | + mock_map_function.return_value = mock_tdamm_tags |
| 181 | + |
| 182 | + classification_results = {"Optical": 0.9} |
| 183 | + custom_threshold = 0.85 |
| 184 | + |
| 185 | + update_url_with_classification_results(mock_url, classification_results, threshold=custom_threshold) |
| 186 | + |
| 187 | + # Based on the implementation, the function doesn't pass the threshold parameter |
| 188 | + mock_map_function.assert_called_once_with(classification_results) |
| 189 | + |
| 190 | + def test_integration_with_real_mapping(self, mock_url): |
| 191 | + """Test end-to-end integration with real mapping function""" |
| 192 | + classification_results = {"Optical": 0.9, "Binary Black Holes": 0.85, "Novae": 0.8} |
| 193 | + |
| 194 | + expected_tags = ["MMA_M_EM_O", "MMA_O_BI_BBH", "MMA_S_N"] |
| 195 | + |
| 196 | + result = update_url_with_classification_results(mock_url, classification_results, threshold=0.7) |
| 197 | + |
| 198 | + assert sorted(result) == sorted(expected_tags) |
| 199 | + assert sorted(mock_url.tdamm_tag_ml) == sorted(expected_tags) |
| 200 | + |
| 201 | + def test_full_mapping_coverage(self): |
| 202 | + """Test that all provided mappings work correctly""" |
| 203 | + mapping = { |
| 204 | + "Optical": "MMA_M_EM_O", |
| 205 | + "Ultraviolet": "MMA_M_EM_U", |
| 206 | + "Exoplanets": "MMA_O_E", |
| 207 | + "Gamma rays": "MMA_M_EM_G", |
| 208 | + "Infrared": "MMA_M_EM_I", |
| 209 | + "Gamma-ray Bursts": "MMA_S_G", |
| 210 | + "SuperNovae": "MMA_S_SU", |
| 211 | + "non-TDAMM": "NOT_TDAMM", |
| 212 | + "Radio": "MMA_M_EM_R", |
| 213 | + "White Dwarf Binaries": "MMA_O_BI_W", |
| 214 | + "Pulsar Wind Nebulae": "MMA_O_N_PWN", |
| 215 | + "X-rays": "MMA_M_EM_X", |
| 216 | + "Compact Binary Inspiral": "MMA_M_G_CBI", |
| 217 | + "Stochastic": "MMA_M_G_S", |
| 218 | + "Continuous": "MMA_M_G_CON", |
| 219 | + "Supernova Remnants": "MMA_O_S", |
| 220 | + "Stellar flares": "MMA_S_ST", |
| 221 | + "Pulsars": "MMA_O_N_P", |
| 222 | + "Neutron Star-Black Hole": "MMA_O_BI_N", |
| 223 | + "Cosmic Rays": "MMA_M_C", |
| 224 | + "Binary Black Holes": "MMA_O_BI_BBH", |
| 225 | + "Burst": "MMA_M_G_B", |
| 226 | + "Binary Neutron Stars": "MMA_O_BI_BNS", |
| 227 | + "Fast Blue Optical Transients": "MMA_S_FBOT", |
| 228 | + "Cataclysmic Variables": "MMA_O_BI_C", |
| 229 | + "Binary Pulsars": "MMA_O_BI_B", |
| 230 | + "Active Galactic Nuclei": "MMA_O_BH_AGN", |
| 231 | + "Neutrinos": "MMA_M_N", |
| 232 | + "Fast Radio Bursts": "MMA_S_F", |
| 233 | + "Stellar Mass": "MMA_O_BH_STM", |
| 234 | + "Magnetars": "MMA_O_N_M", |
| 235 | + "Pevatrons": "MMA_S_P", |
| 236 | + "Novae": "MMA_S_N", |
| 237 | + "Kilonovae": "MMA_S_K", |
| 238 | + "Supermassive": "MMA_O_BH_SUM", |
| 239 | + "Intermediate Mass": "MMA_O_BH_IM", |
| 240 | + } |
| 241 | + |
| 242 | + # Create classification results with all keys |
| 243 | + classification_results = {key: 1.0 for key in mapping.keys()} |
| 244 | + |
| 245 | + # Map to TDAMM tags |
| 246 | + tdamm_tags = map_classification_to_tdamm_tags(classification_results, threshold=0.5) |
| 247 | + |
| 248 | + # Verify all expected tags are present |
| 249 | + assert sorted(tdamm_tags) == sorted(list(mapping.values())) |
0 commit comments