@@ -14281,21 +14281,18 @@ def derivative(
14281
14281
14282
14282
ignore_coordinate_units: `bool`, optional
14283
14283
If True then the coordinates providing the cell
14284
- spacings along the axis are assumed to dimensionless,
14285
- even if they do in fact have units. This does not
14286
- change the returned numerical values, but will alter
14287
- the units of the returned field. If False (the
14288
- default) then the coordinate units will propagate
14289
- through to the result.
14290
-
14291
- If *ignore_coordinate_units* is False then the units
14292
- of the returned field construct will be the original
14293
- units divided by the coordinate units.
14294
-
14295
- If *ignore_coordinate_units* is True then the units of
14296
- the returned field construct will be identical to the
14284
+ spacings along the specified axis are assumed to be
14285
+ dimensionless, even if they do in fact have
14286
+ units. This does not change the magnitude of the
14287
+ returned numerical values, but the units of the
14288
+ returned field construct will be identical to the
14297
14289
original units.
14298
14290
14291
+ If False (the default) then the coordinate units will
14292
+ propagate through to the result. i.e. the units of the
14293
+ returned field construct will be the original units
14294
+ divided by the coordinate units.
14295
+
14299
14296
For example, for a field construct with units of
14300
14297
``m.s-1`` and X coordinate units of ``radians``, the
14301
14298
units of the X derivative will be ``m.s-1.radians-1``
@@ -14436,8 +14433,8 @@ def derivative(
14436
14433
d.insert_dimension(position=1, inplace=True)
14437
14434
14438
14435
if ignore_coordinate_units:
14439
- # Remove the coordinate units before we calculate the
14440
- # derivative
14436
+ # Remove the coordinate units from the coordinate
14437
+ # differences, before we calculate the derivative.
14441
14438
d.override_units(None, inplace=True)
14442
14439
14443
14440
# Find the derivative
0 commit comments