Skip to content

Commit 3b20491

Browse files
committed
DGMA added
1 parent 9febbdc commit 3b20491

File tree

23 files changed

+899
-0
lines changed

23 files changed

+899
-0
lines changed

DGMA/sem3/HW2/main.pdf

97.8 KB
Binary file not shown.

DGMA/sem3/HW2/main.typ

Lines changed: 34 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,34 @@
1+
#set page(
2+
margin: 1.5cm,
3+
numbering: "1"
4+
)
5+
#set par(justify: true)
6+
#set text(
7+
lang: "ru",
8+
size: 12pt,
9+
font: "New Computer Modern",
10+
)
11+
12+
#show math.cases: math.display
13+
14+
#show link: it => underline(text(fill: dark_blue)[#it])
15+
16+
#include "titlePage.typ"
17+
18+
#pagebreak()
19+
20+
// БЛОК С ЗАДАНИЯМИ
21+
22+
#include "tasks/task1.typ"
23+
24+
#line(length: 100%)
25+
26+
#include "tasks/task2.typ"
27+
28+
#line(length: 100%)
29+
30+
#include "tasks/task3.typ"
31+
32+
#line(length: 100%)
33+
34+
#include "tasks/task4.typ"

DGMA/sem3/HW2/task.pdf

116 KB
Binary file not shown.

DGMA/sem3/HW2/tasks/task1.typ

Lines changed: 52 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,52 @@
1+
* Задание №1 * \
2+
Вычислить площади фигур, ограниченных кривыми:
3+
$
4+
(x^2/4 + y^2/9)^2 = x^2/4 - y^2/9
5+
$
6+
$
7+
D: (x^2/4 + y^2/9)^2 = x^2/4 - y^2/9
8+
quad quad
9+
S = integral.double_D d x d y
10+
$
11+
Проведём замену:
12+
$
13+
cases(
14+
u=x/2,
15+
v=y/3
16+
) space => space cases(
17+
x=2u,
18+
y=3v
19+
)\
20+
J = mat(
21+
delim: "|",
22+
x'_u, x'_v;
23+
y'_u, y'_v;
24+
) = mat(
25+
delim: "|",
26+
2, 0;
27+
0, 3;
28+
) = 6 \
29+
D_2: (u^2 + v^2)^2 = u^2 - v^2
30+
quad quad
31+
S = 6 dot integral.double_D_2 d u d v
32+
$
33+
Перейдём в полярные кординаты:
34+
$
35+
cases(
36+
u = r cos(phi),
37+
v = r sin(phi)
38+
)\
39+
((r cos(phi))^2 + (r sin(phi))^2)^2 = (r cos(phi))^2 - (r sin(phi))^2\
40+
r^4(cos(phi)^2 + sin(phi)^2)^2 = r^2(cos(phi)^2 - sin(phi)^2)\
41+
42+
r^2 = cos(2 phi) => r = plus.minus sqrt(cos(2 phi))
43+
space #text[_но т.к _] r > 0, #text[_то_] space r = sqrt(cos(2 phi))\
44+
#text[_при этом _] space 2 phi in [-pi/2, pi/2] + 2pi k => phi in [-pi/4, pi/4] + pi k\
45+
#text[_т.е. кривую можно разбить на 2 идентичные области_]\
46+
$
47+
#v(3pt)
48+
$
49+
S = 6 dot 2 dot integral_(-pi/4)^(pi/4) integral_0^(sqrt(cos(2 phi))) r space d r d phi = 12 dot integral_(-pi/4)^(pi/4) 1/2 cos(2 phi) d phi = mat(delim: "[", t=2phi; d t = 2 d phi) =\
50+
= 6 dot integral_(-pi/2)^(pi/2) 1/2 cos(t) d t = 3 dot (-sin(-pi/2) + sin(pi/2)) = 6
51+
$
52+
Ответ: 6

DGMA/sem3/HW2/tasks/task2.typ

Lines changed: 21 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,21 @@
1+
* Задание №2 * \
2+
Вычислить объёмы тел, ограниченных данными поверхностями:
3+
$z = 0$, $z = 3 - x^2 - y^2$
4+
5+
Найдём точки пересечения:
6+
$
7+
3 - x^2 - y^2 = 0\
8+
x^2 + y^2 = 3 => #text[_окружность радиуса $sqrt(3)$ с центром (0;0)_]\
9+
$
10+
11+
$
12+
V = integral_(-sqrt(3))^(sqrt(3)) integral_(-sqrt(3-x^2))^sqrt(3-x^2) integral_0^(3 - x^2 - y^2) d z d y d x = integral_(-sqrt(3))^(sqrt(3)) integral_(-sqrt(3-x^2))^sqrt(3-x^2) (3 - x^2 - y^2) d y d x = \
13+
= integral_(-sqrt(3))^(sqrt(3)) ((3 - x^2)sqrt(3-x^2) - (3-x^2)^1.5/3) + ((3 - x^2)sqrt(3-x^2) - (3-x^2)^1.5/3) d x =\
14+
= 2 integral_(-sqrt(3))^(sqrt(3)) 2(3-x^2)^1.5/3 d x = 4/3 integral_(-sqrt(3))^(sqrt(3)) (3-x^2)^1.5 d x = mat(delim: "[", x=sqrt(3)sin(t); d x = sqrt(3) cos(t) d t) =\
15+
= 4/3 integral_(-pi/2)^(pi/2) (3-3sin(t)^2)^1.5 sqrt(3) cos(t) d t = 4/3 integral_(-pi/2)^(pi/2) 9 cos(t)^(2 dot 1.5 + 1) d t = 12 integral_(-pi/2)^(pi/2) cos(t)^4 d t = \
16+
= 12 integral_(-pi/2)^(pi/2) ((cos(2 t) + 1)/2)^2 d t = 3 integral_(-pi/2)^(pi/2) cos(2 t)^2 + 2cos(2 t) + 1 space d t = \
17+
= 3 (integral_(-pi/2)^(pi/2) (cos(4 t) + 1)/2 d t + 2 integral_(-pi/2)^(pi/2) cos(2 t) d t + integral_(-pi/2)^(pi/2) d t) =\
18+
= 3 (1/2integral_(-pi/2)^(pi/2) cos(4 t) d t + 1/2integral_(-pi/2)^(pi/2) d t + (sin(pi) - sin(-pi)) + (pi/2 + pi/2)) =\
19+
= 3 (1/8(sin(2pi) - sin(-2pi)) + 1/2 (pi/2 + pi/2) + 0 + pi) = 3 dot 3/2 pi = 9/2 pi
20+
$
21+
Ответ: $9/2 pi$

DGMA/sem3/HW2/tasks/task3.typ

Lines changed: 49 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,49 @@
1+
* Задание №3 * \
2+
Вычислить координаты центра тяжести тела, ограниченного:
3+
параболоидом $4x = y^2 + z^2$ и плоскостью $x = 2$
4+
5+
Найдём точки пересечения:
6+
$
7+
8 = y^2 + z^2\
8+
y^2 + z^2 = 8 => #text[_окружность радиуса $sqrt(8)$ с центром (0;0)_]\
9+
$
10+
Т.к. тело однородное, то примем его плотность за 1
11+
$
12+
V = integral_(-sqrt(8))^sqrt(8) integral_(-sqrt(8-z^2))^(sqrt(8-z^2)) integral^((y^2 + z^2)/4)_2 d x d y d z
13+
$
14+
Перейдём в ЦСК
15+
$
16+
cases(
17+
x = h,
18+
y = r cos(theta),
19+
z = r sin(theta),
20+
) \ J = mat(delim:"|", 1,0,0; 0,cos(theta),-r sin(theta); 0,sin(theta),r cos(theta) ) = 1 dot cos(theta) dot r cos(theta) - (- r sin(theta)) dot sin(theta) dot 1 = r (cos(theta)^2 + sin(theta)^2) = r\
21+
22+
(y^2 + z^2)/4 = (r^2 cos(theta)^2 + r^2 sin(theta)^2)/4 = r^2/4\
23+
24+
V = integral_0^(sqrt(8)) integral_0^(2pi) integral_2^(r^2/4) r space d h d phi d r = integral_0^(sqrt(8)) integral_0^(2pi) r(r^2/4 - 2) d phi d r = integral_0^(sqrt(8)) 2pi r(r^2/4 - 2) d r =\ 1/2 pi integral_0^(sqrt(8)) r^3 d r - 4pi integral_0^(sqrt(8))r d r = 1/2 pi (sqrt(8))^4 /4 - 4 pi (sqrt(8))^2/2 = \
25+
= pi 64/8 - pi 18 = -8 pi
26+
$
27+
Теперь найдём координаты центра масс:
28+
$
29+
x = (integral_0^(sqrt(8)) integral_0^(2pi) integral_2^(r^2/4) r h space d h d phi d r) / V \
30+
integral_0^(sqrt(8)) integral_0^(2pi) integral_2^(r^2/4) r h space d h d phi d r = integral_0^(sqrt(8)) integral_0^(2pi) r ((r^2/4)^2/2 - (2)^2/2) space d phi d r = integral_0^(sqrt(8)) pi r (r^4/16 - 4) space d r =\
31+
= integral_0^(sqrt(8)) pi r (r^4/16 - 4) space d r = pi/16 integral_0^(sqrt(8)) r^5 space d r - 4 pi integral_0^(sqrt(8)) r space d r = pi/16 (sqrt(8))^6/6 - 4pi 8/2 = (pi dot 8^2) / (2 dot 6) - 16 pi = \
32+
= (pi dot 16)/3 - 16 pi = -32/3 pi\
33+
x = -32/3 pi dot (-1/(8pi)) = 32/(3 dot 8) = 4/3\
34+
$
35+
#v(24pt)
36+
$
37+
y = (integral_0^(sqrt(8)) integral_0^(2pi) integral_2^(r^2/4) r^2 cos(phi) space d h d phi d r) / V \
38+
integral_0^(sqrt(8)) integral_0^(2pi) integral_2^(r^2/4) r^2 cos(phi) space d h d phi d r = integral_0^(sqrt(8)) integral_0^(2pi) 2pi r^2 cos(phi) - 2 r^2 cos(phi) space d phi d r =\
39+
= 2 integral_0^(sqrt(8)) r^2 integral_0^(2pi) pi cos(phi) - cos(phi) space d phi d r = 2 integral_0^(sqrt(8)) 0 d r = 0 \
40+
y = 0
41+
$
42+
#v(24pt)
43+
$
44+
z = (integral_0^(sqrt(8)) integral_0^(2pi) integral_2^(r^2/4) r^2 sin(phi) space d h d phi d r) / V \
45+
integral_0^(sqrt(8)) integral_0^(2pi) integral_2^(r^2/4) r^2 sin(phi) space d h d phi d r = integral_0^(sqrt(8)) integral_0^(2pi) 2pi r^2 sin(phi) - 2 r^2 sin(phi) space d phi d r =\
46+
= 2 integral_0^(sqrt(8)) r^2 integral_0^(2pi) pi sin(phi) - sin(phi) space d phi d r = 2 integral_0^(sqrt(8)) 0 d r = 0 \
47+
z = 0
48+
$
49+
Ответ: $(4/3; 0; 0)$

DGMA/sem3/HW2/tasks/task4.typ

Lines changed: 17 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,17 @@
1+
* Задание №4 * \
2+
Вычислить (тройным интегралом) объёмы тел, ограниченных поверхностями:
3+
$
4+
z = x + y quad
5+
z = x y quad
6+
x + y = 1 quad
7+
x = 0 quad
8+
y = 0
9+
$
10+
$
11+
V = integral_0^1 integral_0^(1-x) integral_(x y)^(x+y) d z d y d x = integral_0^1 integral_0^(1-x) (x+y) - x y space d y d x =\
12+
= integral_0^1 x(1-x) d x + integral_0^1 (1-x)^2/2 d x - integral_0^1 x (1-x)^2/2 d x =\
13+
= integral_0^1 x-x^2 space d x + 1/2 integral_0^1 1 - 2x + x^2 space d x - 1/2 integral_0^1 x - 2x^2 + x^3 space d x =\
14+
= 1/2 ( 2 integral_0^1x d x - 2integral_0^1 x^2 d x + integral_0^1 d x - 2 integral_0^1 x d x + integral_0^1 x^2 d x - integral_0^1 x d x + 2integral_0^1 x^2 d x - integral_0^1 x^3 d x) = \
15+
= 1/2 ( integral_0^1 d x - integral_0^1 x d x + integral_0^1 x^2 d x - integral_0^1 x^3 d x) = 1/2(1 - 1/2 + 1/3 - 1/4) = 1/2 dot (12 - 6 + 4 - 3)/12 = 7/24
16+
$
17+
Ответ: $7/24$

DGMA/sem3/HW2/titlePage.typ

Lines changed: 31 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,31 @@
1+
// DOCUMENT TITLE PAGE
2+
#align(center)[
3+
#text(size:12pt)[
4+
Федеральное государственное автономное образовательное учреждение высшего
5+
образования «Национальный исследовательский университет ИТМО»\
6+
Дисциплина «Дополнительный главы математического анализа»\
7+
]
8+
]
9+
10+
#align(center + horizon)[
11+
#box(
12+
width: 100%,
13+
height: 8cm
14+
)[
15+
#text(size: 14pt)[
16+
*Домашняя работа №2*\
17+
Вариант №1
18+
]
19+
]
20+
]
21+
#align(right)[
22+
Выполнил:\
23+
Решетников С.Е.\
24+
25+
Проверил:\
26+
Богачев В.А.
27+
]
28+
29+
#align(center + bottom)[
30+
Санкт-Петербург, 2025
31+
]

DGMA/sem3/RGR1/main.pdf

673 KB
Binary file not shown.

DGMA/sem3/RGR1/main.typ

Lines changed: 57 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,57 @@
1+
#set page(
2+
margin: 1.5cm,
3+
numbering: "1"
4+
)
5+
#set par(justify: true)
6+
#set text(
7+
lang: "ru",
8+
size: 12pt,
9+
font: "New Computer Modern",
10+
)
11+
12+
#show math.cases: math.display
13+
14+
#show link: it => underline(text(fill: dark_blue)[#it])
15+
16+
#include "titlePage.typ"
17+
18+
19+
#pagebreak()
20+
21+
22+
// БЛОК С ЗАДАНИЯМИ
23+
24+
#include "task1/main.typ"
25+
26+
#line(length: 100%)
27+
28+
#include "task2/main.typ"
29+
30+
#line(length: 100%)
31+
32+
#include "task3/main.typ"
33+
34+
#line(length: 100%)
35+
36+
#include "task4/main.typ"
37+
38+
#line(length: 100%)
39+
40+
#include "task5/main.typ"
41+
42+
#line(length: 100%)
43+
44+
#include "task6/main.typ"
45+
46+
#line(length: 100%)
47+
48+
#include "task7/main.typ"
49+
50+
#line(length: 100%)
51+
52+
// КОНЕЦ БЛОКА С ЗАДАНИЯМИ
53+
54+
55+
#pagebreak()
56+
57+
#include "marksPage.typ"

0 commit comments

Comments
 (0)