Skip to content

Commit e823800

Browse files
committed
update pubs
1 parent 252e448 commit e823800

File tree

12 files changed

+87
-308
lines changed

12 files changed

+87
-308
lines changed

_data/publications.yml

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,19 @@
1+
- title: "Interpreting Temporal Graph Neural Networks with Koopman Theory"
2+
authors: "Michele Guerra, Simone Scardapane, Filippo Maria Bianchi"
3+
figure: "figs/publications/koopman.png"
4+
abstract: "We propose an XAI technique based on Koopman theory to interpret temporal graphs and the spatio-temporal Graph Neural Newtworks used to process them. The proposed approach allows to identify nodes and time steps when relevant events occur."
5+
github: "https://github.com/NGMLGroup/Koopman-TGNN-Interpretability"
6+
arxiv: "https://arxiv.org/abs/2410.13469"
7+
bibtex: |
8+
@misc{guerra2024interpretingtemporalgraphneural,
9+
title={Interpreting Temporal Graph Neural Networks with Koopman Theory},
10+
author={Michele Guerra and Simone Scardapane and Filippo Maria Bianchi},
11+
year={2024},
12+
eprint={2410.13469},
13+
archivePrefix={arXiv},
14+
primaryClass={cs.LG},
15+
}
16+
117
- title: "MaxCutPool: differentiable feature-aware Maxcut for pooling in graph neural networks"
218
authors: "Carlo Abate, Filippo Maria Bianchi"
319
figure: "figs/publications/maxcutpool.png"

_site/feed.xml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,2 @@
1-
<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="4.3.4">Jekyll</generator><link href="http://localhost:4000/feed.xml" rel="self" type="application/atom+xml" /><link href="http://localhost:4000/" rel="alternate" type="text/html" /><updated>2024-10-20T12:21:21+02:00</updated><id>http://localhost:4000/feed.xml</id><title type="html">Northernmost GraphML Group</title><subtitle>The Northermost GraphML group in the world, based in Tromsø, Norway.
1+
<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="4.3.4">Jekyll</generator><link href="http://localhost:4000/feed.xml" rel="self" type="application/atom+xml" /><link href="http://localhost:4000/" rel="alternate" type="text/html" /><updated>2024-10-20T12:58:42+02:00</updated><id>http://localhost:4000/feed.xml</id><title type="html">Northernmost GraphML Group</title><subtitle>The Northermost GraphML group in the world, based in Tromsø, Norway.
22
</subtitle></feed>
759 KB
Loading

_site/publications.html

Lines changed: 60 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -53,6 +53,62 @@ <h1>Publications</h1>
5353

5454
<section class="publications">
5555

56+
<div class="publication">
57+
58+
<!-- Title -->
59+
<h3 class="pub-title"><strong>Interpreting Temporal Graph Neural Networks with Koopman Theory</strong></h3>
60+
61+
<!-- Authors -->
62+
<p class="authors">
63+
<em style="color: gray;">Michele Guerra, Simone Scardapane, Filippo Maria Bianchi</em>
64+
</p>
65+
66+
<!-- Venue (optional) -->
67+
68+
69+
<!-- Figure -->
70+
71+
<div class="pub-figure">
72+
<img src="figs/publications/koopman.png" alt="Figure for Interpreting Temporal Graph Neural Networks with Koopman Theory">
73+
</div>
74+
75+
76+
<!-- Abstract -->
77+
<p>We propose an XAI technique based on Koopman theory to interpret temporal graphs and the spatio-temporal Graph Neural Newtworks used to process them. The proposed approach allows to identify nodes and time steps when relevant events occur.</p>
78+
79+
<!-- Links (GitHub, Arxiv, Cite) -->
80+
<div class="pub-links">
81+
82+
<a href="https://github.com/NGMLGroup/Koopman-TGNN-Interpretability" target="_blank" class="btn">
83+
<i class="fab fa-github"></i> GitHub
84+
</a>
85+
86+
87+
<a href="https://arxiv.org/abs/2410.13469" target="_blank" class="btn">
88+
<i class="fas fa-file-alt"></i> ArXiv
89+
</a>
90+
91+
<!-- Cite Link with quotation mark icon -->
92+
<a href="javascript:void(0);" onclick="toggleBibtex(1)" class="btn cite-btn">
93+
<i class="fas fa-quote-right"></i> Cite
94+
</a>
95+
</div>
96+
97+
<!-- BibTeX Entry (Hidden by Default) -->
98+
<div id="bibtex-entry-1" class="bibtex-entry" style="display: none;">
99+
<pre>@misc{guerra2024interpretingtemporalgraphneural,
100+
title={Interpreting Temporal Graph Neural Networks with Koopman Theory},
101+
author={Michele Guerra and Simone Scardapane and Filippo Maria Bianchi},
102+
year={2024},
103+
eprint={2410.13469},
104+
archivePrefix={arXiv},
105+
primaryClass={cs.LG},
106+
}
107+
</pre>
108+
</div>
109+
110+
</div>
111+
56112
<div class="publication">
57113

58114
<!-- Title -->
@@ -89,13 +145,13 @@ <h3 class="pub-title"><strong>MaxCutPool: differentiable feature-aware Maxcut fo
89145
</a>
90146

91147
<!-- Cite Link with quotation mark icon -->
92-
<a href="javascript:void(0);" onclick="toggleBibtex(1)" class="btn cite-btn">
148+
<a href="javascript:void(0);" onclick="toggleBibtex(2)" class="btn cite-btn">
93149
<i class="fas fa-quote-right"></i> Cite
94150
</a>
95151
</div>
96152

97153
<!-- BibTeX Entry (Hidden by Default) -->
98-
<div id="bibtex-entry-1" class="bibtex-entry" style="display: none;">
154+
<div id="bibtex-entry-2" class="bibtex-entry" style="display: none;">
99155
<pre>@article{abate2024maxcutpool,
100156
title={MaxCutPool: differentiable feature-aware Maxcut for pooling in graph neural networks},
101157
author={Abate, Carlo and Bianchi, Filippo Maria},
@@ -147,13 +203,13 @@ <h3 class="pub-title"><strong>Graph-based Forecasting with Missing Data through
147203
</a>
148204

149205
<!-- Cite Link with quotation mark icon -->
150-
<a href="javascript:void(0);" onclick="toggleBibtex(2)" class="btn cite-btn">
206+
<a href="javascript:void(0);" onclick="toggleBibtex(3)" class="btn cite-btn">
151207
<i class="fas fa-quote-right"></i> Cite
152208
</a>
153209
</div>
154210

155211
<!-- BibTeX Entry (Hidden by Default) -->
156-
<div id="bibtex-entry-2" class="bibtex-entry" style="display: none;">
212+
<div id="bibtex-entry-3" class="bibtex-entry" style="display: none;">
157213
<pre>@inproceedings{marisca2024graph,
158214
title = {Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling},
159215
author = {Marisca, Ivan and Alippi, Cesare and Bianchi, Filippo Maria},

_site/theses/gnn-physics/index.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,11 +19,11 @@
1919
<meta property="og:url" content="http://localhost:4000/theses/gnn-physics/" />
2020
<meta property="og:site_name" content="Northernmost GraphML Group" />
2121
<meta property="og:type" content="article" />
22-
<meta property="article:published_time" content="2024-10-20T12:21:21+02:00" />
22+
<meta property="article:published_time" content="2024-10-20T12:58:42+02:00" />
2323
<meta name="twitter:card" content="summary" />
2424
<meta property="twitter:title" content="Graph neural networks and Physics" />
2525
<script type="application/ld+json">
26-
{"@context":"https://schema.org","@type":"BlogPosting","dateModified":"2024-10-20T12:21:21+02:00","datePublished":"2024-10-20T12:21:21+02:00","description":"Graph neural networks and Physics","headline":"Graph neural networks and Physics","mainEntityOfPage":{"@type":"WebPage","@id":"http://localhost:4000/theses/gnn-physics/"},"publisher":{"@type":"Organization","logo":{"@type":"ImageObject","url":"http://localhost:4000/figs/NGMLGlogo2.png"}},"url":"http://localhost:4000/theses/gnn-physics/"}</script>
26+
{"@context":"https://schema.org","@type":"BlogPosting","dateModified":"2024-10-20T12:58:42+02:00","datePublished":"2024-10-20T12:58:42+02:00","description":"Graph neural networks and Physics","headline":"Graph neural networks and Physics","mainEntityOfPage":{"@type":"WebPage","@id":"http://localhost:4000/theses/gnn-physics/"},"publisher":{"@type":"Organization","logo":{"@type":"ImageObject","url":"http://localhost:4000/figs/NGMLGlogo2.png"}},"url":"http://localhost:4000/theses/gnn-physics/"}</script>
2727
<!-- End Jekyll SEO tag -->
2828
<link rel="stylesheet" href="/assets/css/style.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Northernmost GraphML Group" />
2929
</head>

_site/theses/graph-pooling/index.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,11 +19,11 @@
1919
<meta property="og:url" content="http://localhost:4000/theses/graph-pooling/" />
2020
<meta property="og:site_name" content="Northernmost GraphML Group" />
2121
<meta property="og:type" content="article" />
22-
<meta property="article:published_time" content="2024-10-20T12:21:21+02:00" />
22+
<meta property="article:published_time" content="2024-10-20T12:58:42+02:00" />
2323
<meta name="twitter:card" content="summary" />
2424
<meta property="twitter:title" content="Clustering and graph coarsening with Graph Neural Networks" />
2525
<script type="application/ld+json">
26-
{"@context":"https://schema.org","@type":"BlogPosting","dateModified":"2024-10-20T12:21:21+02:00","datePublished":"2024-10-20T12:21:21+02:00","description":"Clustering and graph coarsening with Graph Neural Networks","headline":"Clustering and graph coarsening with Graph Neural Networks","mainEntityOfPage":{"@type":"WebPage","@id":"http://localhost:4000/theses/graph-pooling/"},"publisher":{"@type":"Organization","logo":{"@type":"ImageObject","url":"http://localhost:4000/figs/NGMLGlogo2.png"}},"url":"http://localhost:4000/theses/graph-pooling/"}</script>
26+
{"@context":"https://schema.org","@type":"BlogPosting","dateModified":"2024-10-20T12:58:42+02:00","datePublished":"2024-10-20T12:58:42+02:00","description":"Clustering and graph coarsening with Graph Neural Networks","headline":"Clustering and graph coarsening with Graph Neural Networks","mainEntityOfPage":{"@type":"WebPage","@id":"http://localhost:4000/theses/graph-pooling/"},"publisher":{"@type":"Organization","logo":{"@type":"ImageObject","url":"http://localhost:4000/figs/NGMLGlogo2.png"}},"url":"http://localhost:4000/theses/graph-pooling/"}</script>
2727
<!-- End Jekyll SEO tag -->
2828
<link rel="stylesheet" href="/assets/css/style.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Northernmost GraphML Group" />
2929
</head>

_site/theses/polar-weather/index.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,11 +19,11 @@
1919
<meta property="og:url" content="http://localhost:4000/theses/polar-weather/" />
2020
<meta property="og:site_name" content="Northernmost GraphML Group" />
2121
<meta property="og:type" content="article" />
22-
<meta property="article:published_time" content="2024-10-20T12:21:21+02:00" />
22+
<meta property="article:published_time" content="2024-10-20T12:58:42+02:00" />
2323
<meta name="twitter:card" content="summary" />
2424
<meta property="twitter:title" content="Polar weather prediction with Graph neural networks" />
2525
<script type="application/ld+json">
26-
{"@context":"https://schema.org","@type":"BlogPosting","dateModified":"2024-10-20T12:21:21+02:00","datePublished":"2024-10-20T12:21:21+02:00","description":"Polar weather prediction with Graph neural networks","headline":"Polar weather prediction with Graph neural networks","mainEntityOfPage":{"@type":"WebPage","@id":"http://localhost:4000/theses/polar-weather/"},"publisher":{"@type":"Organization","logo":{"@type":"ImageObject","url":"http://localhost:4000/figs/NGMLGlogo2.png"}},"url":"http://localhost:4000/theses/polar-weather/"}</script>
26+
{"@context":"https://schema.org","@type":"BlogPosting","dateModified":"2024-10-20T12:58:42+02:00","datePublished":"2024-10-20T12:58:42+02:00","description":"Polar weather prediction with Graph neural networks","headline":"Polar weather prediction with Graph neural networks","mainEntityOfPage":{"@type":"WebPage","@id":"http://localhost:4000/theses/polar-weather/"},"publisher":{"@type":"Organization","logo":{"@type":"ImageObject","url":"http://localhost:4000/figs/NGMLGlogo2.png"}},"url":"http://localhost:4000/theses/polar-weather/"}</script>
2727
<!-- End Jekyll SEO tag -->
2828
<link rel="stylesheet" href="/assets/css/style.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Northernmost GraphML Group" />
2929
</head>

_site/theses/power-flow/index.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,11 +19,11 @@
1919
<meta property="og:url" content="http://localhost:4000/theses/power-flow/" />
2020
<meta property="og:site_name" content="Northernmost GraphML Group" />
2121
<meta property="og:type" content="article" />
22-
<meta property="article:published_time" content="2024-10-20T12:21:21+02:00" />
22+
<meta property="article:published_time" content="2024-10-20T12:58:42+02:00" />
2323
<meta name="twitter:card" content="summary" />
2424
<meta property="twitter:title" content="Power flow optimization with Graph Neural Networks" />
2525
<script type="application/ld+json">
26-
{"@context":"https://schema.org","@type":"BlogPosting","dateModified":"2024-10-20T12:21:21+02:00","datePublished":"2024-10-20T12:21:21+02:00","description":"Power flow optimization with Graph Neural Networks","headline":"Power flow optimization with Graph Neural Networks","mainEntityOfPage":{"@type":"WebPage","@id":"http://localhost:4000/theses/power-flow/"},"publisher":{"@type":"Organization","logo":{"@type":"ImageObject","url":"http://localhost:4000/figs/NGMLGlogo2.png"}},"url":"http://localhost:4000/theses/power-flow/"}</script>
26+
{"@context":"https://schema.org","@type":"BlogPosting","dateModified":"2024-10-20T12:58:42+02:00","datePublished":"2024-10-20T12:58:42+02:00","description":"Power flow optimization with Graph Neural Networks","headline":"Power flow optimization with Graph Neural Networks","mainEntityOfPage":{"@type":"WebPage","@id":"http://localhost:4000/theses/power-flow/"},"publisher":{"@type":"Organization","logo":{"@type":"ImageObject","url":"http://localhost:4000/figs/NGMLGlogo2.png"}},"url":"http://localhost:4000/theses/power-flow/"}</script>
2727
<!-- End Jekyll SEO tag -->
2828
<link rel="stylesheet" href="/assets/css/style.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Northernmost GraphML Group" />
2929
</head>

_site/theses/text-data/index.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,11 +19,11 @@
1919
<meta property="og:url" content="http://localhost:4000/theses/text-data/" />
2020
<meta property="og:site_name" content="Northernmost GraphML Group" />
2121
<meta property="og:type" content="article" />
22-
<meta property="article:published_time" content="2024-10-20T12:21:21+02:00" />
22+
<meta property="article:published_time" content="2024-10-20T12:58:42+02:00" />
2323
<meta name="twitter:card" content="summary" />
2424
<meta property="twitter:title" content="Graph of text data, using large language models" />
2525
<script type="application/ld+json">
26-
{"@context":"https://schema.org","@type":"BlogPosting","dateModified":"2024-10-20T12:21:21+02:00","datePublished":"2024-10-20T12:21:21+02:00","description":"📝 Description The main idea is to build graphs of documents, graphs of topics contained in them, connecting abstract concepts and ideas inside the documents. We want to detect important news, automatically classify documents and get detailed information about a topic. The approach is in the same vein as Retrieval Augmented Generation RAG but we want to leverage the graph structure for a better retrieval of information.","headline":"Graph of text data, using large language models","mainEntityOfPage":{"@type":"WebPage","@id":"http://localhost:4000/theses/text-data/"},"publisher":{"@type":"Organization","logo":{"@type":"ImageObject","url":"http://localhost:4000/figs/NGMLGlogo2.png"}},"url":"http://localhost:4000/theses/text-data/"}</script>
26+
{"@context":"https://schema.org","@type":"BlogPosting","dateModified":"2024-10-20T12:58:42+02:00","datePublished":"2024-10-20T12:58:42+02:00","description":"📝 Description The main idea is to build graphs of documents, graphs of topics contained in them, connecting abstract concepts and ideas inside the documents. We want to detect important news, automatically classify documents and get detailed information about a topic. The approach is in the same vein as Retrieval Augmented Generation RAG but we want to leverage the graph structure for a better retrieval of information.","headline":"Graph of text data, using large language models","mainEntityOfPage":{"@type":"WebPage","@id":"http://localhost:4000/theses/text-data/"},"publisher":{"@type":"Organization","logo":{"@type":"ImageObject","url":"http://localhost:4000/figs/NGMLGlogo2.png"}},"url":"http://localhost:4000/theses/text-data/"}</script>
2727
<!-- End Jekyll SEO tag -->
2828
<link rel="stylesheet" href="/assets/css/style.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Northernmost GraphML Group" />
2929
</head>

0 commit comments

Comments
 (0)