|
1 | 1 | --- |
2 | | -title: Algoprudence repository |
3 | | -subtitle: "Stakeholders learn from our\_techno-ethical jurisprudence, can help to improve it and can use it as to resolve ethical issues in a harmonized manner.\n\nWe are open to new cases. Please <span style=\"color:#005aa7\">[submit</span>](/algoprudence/submit-a-case/) a case for review.\n\nOr read our <span style=\"color:#005aa7\">[white paper</span>](/knowledge-platform/knowledge-base/white_paper_algoprudence/) on algoprudence.\n" |
4 | | -image: /images/svg-illustrations/case_repository.svg |
5 | | -team: |
6 | | - title: Algoprudence team |
7 | | - team_members: |
8 | | - - image: /images/people/JFP.svg |
9 | | - name: Jurriaan |
10 | | - bio: | |
11 | | - test |
12 | | -facet_groups: |
13 | | - - value: year |
14 | | - title: Year |
15 | | - facets: |
16 | | - - value: '2024' |
17 | | - label: '2024' |
18 | | - - value: '2023' |
19 | | - label: '2023' |
20 | | - - value: '2022' |
21 | | - label: '2022' |
22 | | - - value: type_of_audit |
23 | | - title: Type of audit |
24 | | - facets: |
25 | | - - value: technical |
26 | | - label: Technical audit |
27 | | - - value: normative |
28 | | - label: Normative review |
29 | | - - value: type_of_algorithm |
30 | | - title: Type of algorithm |
31 | | - facets: |
32 | | - - value: profiling |
33 | | - label: Profiling |
34 | | - - value: rule_based |
35 | | - label: Rule-based |
36 | | - - value: ml |
37 | | - label: Machine learning (ML) |
38 | | - - value: bias_detection_tool |
39 | | - label: Bias detection tool |
40 | | - - value: high_risk_AI |
41 | | - label: High-risk AI system |
42 | | - - value: ethical_issue |
43 | | - title: Ethical issue |
44 | | - facets: |
45 | | - - value: proxy |
46 | | - label: Proxy discrimination |
47 | | - - value: fp_fn_balancing |
48 | | - label: FP-FN balancing |
49 | | - - value: standard |
50 | | - title: Harmonized standard |
51 | | - facets: |
52 | | - - value: risk_management |
53 | | - label: Risk management |
54 | | - - value: governance_data_quality |
55 | | - label: Governance & data quality |
56 | | - - value: record_keeping |
57 | | - label: Record keeping |
58 | | - - value: transparency_provisions |
59 | | - label: Transparency provisions |
60 | | - - value: human_oversight |
61 | | - label: Human oversight |
62 | | - - value: accuracy_specifications |
63 | | - label: Accuracy specifications |
64 | | - - value: robustness_specifications |
65 | | - label: Robustness specifications |
66 | | - - value: quality_management_system |
67 | | - label: Quality management system |
68 | | - - value: owner |
69 | | - title: Algorithm owned by |
70 | | - facets: |
71 | | - - value: public |
72 | | - label: Public organisation |
73 | | - - value: private |
74 | | - label: Private organisation |
75 | | - - value: self |
76 | | - label: Algorithm Audit |
77 | | -title_content: Case repository |
78 | | -algoprudences: |
79 | | - - title: Addendum Preventing prejudice |
80 | | - intro: >- |
81 | | - Further research into CUB process of Education Executive Agency of The |
82 | | - Netherlands (DUO) by analysing aggregation statistics on the country of |
83 | | - birth and country of origin of 300.000+ students in the period 2014-2022 |
84 | | - provided by the Dutch national office of statistics |
85 | | - image: /images/algoprudence/AA202402/AA202402_cover.png |
86 | | - link: /algoprudence/cases/aa202402_preventing-prejudice_addendum/ |
87 | | - facets: |
88 | | - - value: AA202402 |
89 | | - label: 'TA:AA:2024:02' |
90 | | - - value: year_2024 |
91 | | - label: '2024' |
92 | | - hide: true |
93 | | - - value: type_of_audit_technical |
94 | | - label: technical audit |
95 | | - - value: type_of_algorithm_rule_based |
96 | | - label: rule-based |
97 | | - - value: type_of_algorithm_profiling |
98 | | - label: profiling |
99 | | - - value: ethical_issue_proxy |
100 | | - label: proxy discrimination |
101 | | - - value: owner_public |
102 | | - label: public organisation |
103 | | - - value: standard_risk_management |
104 | | - label: risk mmanagement |
105 | | - hide: true |
106 | | - - value: standard_governance_data_quality |
107 | | - label: governance & data quality |
108 | | - hide: true |
109 | | - - value: standard_transparency_provisions |
110 | | - label: transparancy provisions |
111 | | - hide: true |
112 | | - - value: standard_human_oversight |
113 | | - label: human oversight |
114 | | - hide: true |
115 | | - - value: standard_quality_management_system |
116 | | - label: quality management |
117 | | - hide: true |
118 | | - - title: Preventing prejudice |
119 | | - intro: >- |
120 | | - Disparities have been identified in the control process of a Dutch public |
121 | | - sector organisation regarding misuse of college allowances. In the period |
122 | | - 2012-2022, students who lived close to their parent(s) were significantly |
123 | | - more often selected for a control procedure than others. The algorithm |
124 | | - used to support the selection performed as expected. |
125 | | - image: /images/algoprudence/AA202401/Cover_EN.png |
126 | | - link: /algoprudence/cases/aa202401_preventing-prejudice/ |
127 | | - facets: |
128 | | - - value: algoprudence |
129 | | - label: 'TA:AA:2024:01' |
130 | | - - value: year_2024 |
131 | | - label: '2024' |
132 | | - hide: true |
133 | | - - value: type_of_audit_technical |
134 | | - label: technical audit |
135 | | - - value: type_of_algorithm_rule_based |
136 | | - label: rule-based |
137 | | - - value: type_of_algorithm_profiling |
138 | | - label: profiling |
139 | | - - value: ethical_issue_proxy |
140 | | - label: proxy discrimination |
141 | | - - value: owner_public |
142 | | - label: public organisation |
143 | | - - value: standard_risk_management |
144 | | - label: risk management |
145 | | - hide: true |
146 | | - - value: standard_governance_data_quality |
147 | | - label: governance & data quality |
148 | | - hide: true |
149 | | - - value: standard_transparency_provisions |
150 | | - label: transparency provisions |
151 | | - hide: true |
152 | | - - value: standard_human_oversight |
153 | | - label: human oversight |
154 | | - hide: true |
155 | | - - value: standard_quality_management_system |
156 | | - label: quality management system |
157 | | - hide: true |
158 | | - - title: Risk Profiling for Social Welfare Reexamination |
159 | | - intro: >- |
160 | | - The commission judges that algorithmic risk profiling can be used under |
161 | | - strict conditions for sampling residents receiving social welfare for |
162 | | - re-examination. The aim of re-examination is a leading factor in judging |
163 | | - profiling criteria. |
164 | | - image: /images/algoprudence/AA202302/AA202302A_cover_EN.png |
165 | | - link: >- |
166 | | - /algoprudence/cases/aa202302_risk-profiling-for-social-welfare-reexamination/ |
167 | | - facets: |
168 | | - - value: aa202302 |
169 | | - label: 'ALGO:AA:2023:02' |
170 | | - - value: year_2023 |
171 | | - label: '2023' |
172 | | - hide: true |
173 | | - - value: type_of_audit_normative |
174 | | - label: normative review |
175 | | - - value: type_of_algorithm_profiling |
176 | | - label: profiling |
177 | | - - value: type_of_algorithm_ml |
178 | | - label: ML |
179 | | - - value: type_of_algorithm_high_risk_AI |
180 | | - label: high-risk AI |
181 | | - - value: ethical_issue_proxy |
182 | | - label: proxy discrimination |
183 | | - - value: owner_public |
184 | | - label: public organisation |
185 | | - - value: standard_risk_management |
186 | | - label: risk management |
187 | | - hide: true |
188 | | - - value: standard_record_keeping |
189 | | - label: record keeping |
190 | | - hide: true |
191 | | - - value: standard_transparency_provisions |
192 | | - label: transparency provisions |
193 | | - hide: true |
194 | | - - value: standard_human_oversight |
195 | | - label: human oversight |
196 | | - hide: true |
197 | | - - value: standard_accuracy_specification |
198 | | - label: accuracy specification |
199 | | - hide: true |
200 | | - - value: standard_robustness_specifications |
201 | | - label: robustness specifications |
202 | | - hide: true |
203 | | - - value: standard_quality_management_system |
204 | | - label: quality management system |
205 | | - hide: true |
206 | | - - title: BERT-based disinformation classifier |
207 | | - intro: >- |
208 | | - The audit commission believes there is a low risk of (higher-dimensional) |
209 | | - proxy discrimination by the BERT-based disinformation classifier and that |
210 | | - the particular difference in treatment identified by the quantitative bias |
211 | | - scan can be justified, if certain conditions apply. |
212 | | - image: /images/algoprudence/AA202301/Cover.png |
213 | | - link: /algoprudence/cases/aa202301_bert-based-disinformation-classifier |
214 | | - facets: |
215 | | - - value: aa_2023_01 |
216 | | - label: 'ALGO:AA:2023:01' |
217 | | - - value: year_2023 |
218 | | - label: '2023' |
219 | | - hide: true |
220 | | - - value: type_of_audit_normative |
221 | | - label: normative review |
222 | | - - value: type_of_algorithm_bias_detection_tool |
223 | | - label: bias detection tool |
224 | | - - value: type_of_algorithm_ml |
225 | | - label: ML |
226 | | - - value: type_of_algorithm_high_risk_AI |
227 | | - label: high-risk AI |
228 | | - - value: ethical_issue_fp_fn_balancing |
229 | | - label: FP-FN balancing |
230 | | - - value: owner_self |
231 | | - label: Algorithm Audit |
232 | | - - value: disinformation |
233 | | - label: disinformation |
234 | | - - value: standard_risk_management |
235 | | - label: risk management |
236 | | - hide: true |
237 | | - - value: standard_accuracy_specifications |
238 | | - label: accuracy specifications |
239 | | - hide: true |
240 | | - - value: standard_quality_management_system |
241 | | - label: quality management system |
242 | | - hide: true |
243 | | - - title: Type of SIM card as a predictor variable to detect payment fraud |
244 | | - intro: >- |
245 | | - The audit commission advises against using type of SIM card as an input |
246 | | - variable in algorithmic models that predict payment defaults and block |
247 | | - afterpay services for specific customers. As it is likely that type of SIM |
248 | | - card acts as a proxy-variable for sensitive demographic categories, the |
249 | | - model would run an intolerable risk of disproportionally excluding |
250 | | - vulnerable demographic groups from the payment service. |
251 | | - image: /images/algoprudence/AA202201/Cover.png |
252 | | - link: /algoprudence/cases/aa202201_type-of-sim |
253 | | - facets: |
254 | | - - value: AA-2022-01 |
255 | | - label: 'ALGO:AA:2022:01' |
256 | | - - value: year_2022 |
257 | | - label: '2022' |
258 | | - hide: true |
259 | | - - value: type_of_audit_normative |
260 | | - label: normative review |
261 | | - - value: type_of_algorithm_profiling |
262 | | - label: profiling |
263 | | - - value: ethical_issue_proxy |
264 | | - label: proxy discrimination |
265 | | - - value: owner_private |
266 | | - label: private organisation |
267 | | - - value: e-commerce |
268 | | - label: e-commerce |
269 | | - - value: standard_risk_management |
270 | | - label: risk management |
271 | | - hide: true |
272 | | - - value: standard_governance_data_quality |
273 | | - label: governance & data quality |
274 | | - hide: true |
275 | | - - value: standard_transparency_provisions |
276 | | - label: transparency provisions |
277 | | - hide: true |
278 | | -layout: repository |
| 2 | +layout: sublandingpage |
| 3 | +title: Knowledge platform |
| 4 | +titleline2: Statistical and legal expertise |
| 5 | +subtitle: > |
| 6 | + We bring together expertise from various fields to build public, including statistics, ethics |
| 7 | + and law, to build public knowledge on responsible AI. We document our work in |
| 8 | + a knowledge base. For key themes we build thematic resources, such as AI Act |
| 9 | + standards and non-profit project work. |
| 10 | +icon: fa-layer-group |
| 11 | +color: '#2559A2' |
| 12 | +subpage_links: |
| 13 | + - title: Knowledge base |
| 14 | + titleline2: >- |
| 15 | + Collection of our public standards, white papers, op-eds, readworthy |
| 16 | + articles and more, including search functionalities |
| 17 | + icon: fa-brain |
| 18 | + color: '#FFF' |
| 19 | + - title: AI Act standards |
| 20 | + titleline2: >- |
| 21 | + Public knowledge on harmonized standards developed for AI Act compliance by CEN-CENELEC |
| 22 | + icon: fa-check |
| 23 | + color: '#FFF' |
| 24 | + - title: AI policy observatory |
| 25 | + titleline2: >- |
| 26 | + Overiew of policy initiatives to regulate AI, including AI Act, GDPR, DSA, national administrative law etc. |
| 27 | + icon: fa-binoculars |
| 28 | + color: '#FFF' |
| 29 | + - title: Project work |
| 30 | + titleline2: >- |
| 31 | + Collection of our public AI Standards, white papers, op-eds and readworthy |
| 32 | + articles, including search functionalities |
| 33 | + icon: fa-hands-helping |
| 34 | + color: '#FFF' |
279 | 35 | --- |
280 | | - |
0 commit comments