Skip to content

Commit 85bd357

Browse files
committed
Add empirical methods white paper in EN and NL
Added new knowledge base articles on empirical methods for supervising algorithmic profiling systems in both English and Dutch, including associated image and PDF. Updated 'featured' status for several existing articles.
1 parent 1382bb6 commit 85bd357

File tree

8 files changed

+76
-3
lines changed

8 files changed

+76
-3
lines changed

content/.DS_Store

0 Bytes
Binary file not shown.

content/english/knowledge-platform/knowledge-base/Comparative_review_10_FRIAs.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
---
22
icon: fas fa-search
3-
featured: true
3+
featured: false
44
layout: article
55
type: knowledgebase_item
66
author: Algorithm Audit
Lines changed: 37 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,37 @@
1+
---
2+
intro: >-
3+
How empirical methods can help regulating AI
4+
featured: true
5+
layout: article
6+
type: knowledgebase_item
7+
facets:
8+
- value: type_white_paper
9+
label: white paper
10+
- value: subject_scientific
11+
label: scientific
12+
author: Algorithm Audit and Netherlands Bureau for Economic Policy Analysis
13+
summary: >-
14+
How empirical methods can help regulating AI
15+
weight: -16
16+
title: 'Empirical methods for supervising algorithmic profiling systems'
17+
subtitle: ''
18+
image: /images/knowledge_base/White_paper_Empirical_methods.png
19+
search:
20+
searchableText: tvt, toezicht, tijdschrift voor toezicht
21+
---
22+
23+
This article will be published in a special edition of the Journal for Supervision in Dutch *Praktische handvatten voor empirisch toezicht op profileringsalgoritmes*.
24+
25+
###### Abstract
26+
27+
When regulating algorithmic profiling systems, not only legal but also statistical information plays a key role.
28+
Using a Dutch public sector risk profiling algorithm as an example, we demonstrate that current frameworks,
29+
guidelines and soft law fall short in providing sufficient guidance for the interpretation of open norms within
30+
European non-discrimination law. We show that established methods from empirical science can help
31+
clarifying these norms. Building on the case-based example, we propose an assessment protocol designed
32+
to assist supervisory authorities in formulating targeted questions to examine indirect discrimination through
33+
algorithmic profiling systems used in the public and private sector. This approach builds upon existing
34+
legal frameworks, enabling supervisory authorities to effectively monitor algorithm-driven decision-making
35+
processes, even with limited resources.
36+
37+
{{< embed_pdf url="/pdf-files/knowledge-base/20250826_Empirical_methods_for_supervising_algorithmic_profiling_systems.pdf" width_mobile_pdf="12" width_desktop_pdf="6" >}}

content/english/knowledge-platform/knowledge-base/Public_standard_Meaningful_human_intervention.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
---
22
layout: article
3-
featured: true
3+
featured: false
44
type: knowledgebase_item
55
author: Algorithm Audit
66
summary: >-

content/english/knowledge-platform/knowledge-base/Public_standard_profiling.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
---
22
icon: fas fa-search
3-
featured: true
3+
featured: false
44
layout: article
55
type: knowledgebase_item
66
author: Algorithm Audit
Lines changed: 36 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,36 @@
1+
---
2+
intro: >-
3+
Praktische handvatten voor empirisch toezicht op profileringsalgoritmes
4+
featured: true
5+
layout: article
6+
type: knowledgebase_item
7+
facets:
8+
- value: type_white_paper
9+
label: white paper
10+
- value: subject_scientific
11+
label: wetenschappelijk
12+
author: Algorithm Audit en Centraal Planbureau
13+
summary: >-
14+
Hoe empirische methoden ondersteunen bij toezicht op AI
15+
weight: -16
16+
title: 'Praktische handvatten voor empirisch toezicht op profileringsalgoritmes'
17+
subtitle: ''
18+
image: /images/knowledge_base/White_paper_Empirical_methods.png
19+
search:
20+
searchableText: tvt, toezicht, tijdschrift voor toezicht
21+
---
22+
23+
Dit artikel is gepubliceerd in een thema-editie van het Tijdschrift voor Toezicht (TvT) als *Praktische handvatten voor empirisch toezicht op profileringsalgoritmes*.
24+
25+
###### Abstract
26+
27+
Bij toezicht op algoritmes en AI staat niet alleen het recht, maar ook de sta8s8ek centraal. Aan de hand
28+
van een concreet profileringsalgoritme lichten we toe dat bestaande kaders, handreikingen en so> law
29+
onvoldoende houvast bieden voor het invullen van open normen uit het gelijke behandelingsrecht. We
30+
illustreren dat beproefde methoden uit de empirische wetenschap handvaBen bieden om deze normen
31+
in te vullen. Aan de hand van het prak8jkvoorbeeld wordt een vragenlijst geïntroduceerd die
32+
toezichthouders ondersteunt in het stellen van gerichte vragen over indirect onderscheid door
33+
algoritmes en AI. Deze aanpak bouwt voort op weBelijke kaders en stelt toezichthouders in staat met
34+
beperkte middelen effec8ef toezicht te houden op algoritme-gedreven besluitvormingsprocessen.
35+
36+
{{< embed_pdf url="/pdf-files/knowledge-base/20250826_Empirical_methods_for_supervising_algorithmic_profiling_systems.pdf" width_mobile_pdf="12" width_desktop_pdf="6" >}}
254 KB
Loading

0 commit comments

Comments
 (0)