You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: src/locales/en.ts
+7-6Lines changed: 7 additions & 6 deletions
Original file line number
Diff line number
Diff line change
@@ -111,7 +111,7 @@ export const en = {
111
111
'By default, the CART method is used to generate synthetic data. CART generally produces higher quality synthetic data, but might not work well on datasets with categorical variables with 20+ categories. Use Gaussian Copula in those cases.',
112
112
},
113
113
nanTreatment: {
114
-
title: 'NaN Values Treatment',
114
+
title: 'NaN values treatment',
115
115
drop: 'Drop rows with NaN values',
116
116
impute: 'Impute NaN values',
117
117
tooltip:
@@ -151,13 +151,14 @@ export const en = {
151
151
cartModelDescription:
152
152
'The CART (Classification and Regression Trees) method generates synthetic data by learning patterns from real data through a decision tree that splits data into homogeneous groups based on feature values. It predicts averages for numerical data and assigns the most common category for categorical data, using these predictions to create new synthetic points.',
153
153
evaluationOfGeneratedDataTitle: '4. Evaluation of generated data',
Copy file name to clipboardExpand all lines: src/locales/nl.ts
+6-5Lines changed: 6 additions & 5 deletions
Original file line number
Diff line number
Diff line change
@@ -156,13 +156,14 @@ export const nl = {
156
156
cartModelDescription:
157
157
'De CART-methode (Classification and Regression Trees) genereert synthetische data door patronen uit echte data te leren via een beslisboom die de data opdeelt in homogene groepen op basis van kenmerkwaarden. Voor numerieke data voorspelt de methode gemiddelden, en voor categorische data wijst het de meest voorkomende categorie toe. Deze voorspellingen worden vervolgens gebruikt om nieuwe synthetische gegevenspunten te creëren.',
158
158
evaluationOfGeneratedDataTitle: '4. Evaluatie van gegenereerde data',
' \n \n \n \nWil je meer weten over synthetische data?\n \n \n \n- [python-synthpop op Github](https://github.com/NGO-Algorithm-Audit/python-synthpop)\n- [local-first web app op Github](https://github.com/NGO-Algorithm-Audit/local-first-web-tool/tree/main)\n- [Synthetische Data: wat, waarom en hoe?](https://royalsociety.org/-/media/policy/projects/privacy-enhancing-technologies/Synthetic_Data_Survey-24.pdf)\n- [Kennis Netwerk Synthetische Data](https://online.rijksinnovatiecommunity.nl/groups/399-kennisnetwerk-synthetischedata/welcome) (for Dutch public organizations)\n- [Synthetische data portaal van DUO](https://duo.nl/open_onderwijsdata/footer/synthetische-data.jsp)\n- [CART: synthpop resources](https://synthpop.org.uk/resources.html)\n- [Gaussian Copula - Synthetic Data Vault](https://docs.sdv.dev/sdv)',
0 commit comments