|
553 | 553 | }, |
554 | 554 | { |
555 | 555 | "cell_type": "code", |
556 | | - "execution_count": 11, |
| 556 | + "execution_count": 14, |
557 | 557 | "metadata": {}, |
558 | | - "outputs": [], |
| 558 | + "outputs": [ |
| 559 | + { |
| 560 | + "ename": "ValueError", |
| 561 | + "evalue": "All objects passed were None", |
| 562 | + "output_type": "error", |
| 563 | + "traceback": [ |
| 564 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 565 | + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", |
| 566 | + "Cell \u001b[0;32mIn[14], line 22\u001b[0m\n\u001b[1;32m 20\u001b[0m encoders[col] \u001b[38;5;241m=\u001b[39m encoder\n\u001b[1;32m 21\u001b[0m data\u001b[38;5;241m.\u001b[39mdrop(columns\u001b[38;5;241m=\u001b[39m[col], inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m---> 22\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconcat\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreset_index\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdrop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minplace\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtransformed_data\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreset_index\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdrop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minplace\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 24\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m dtype \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnumerical\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 25\u001b[0m scaler \u001b[38;5;241m=\u001b[39m StandardScaler(with_mean\u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m, with_std\u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m)\n", |
| 567 | + "File \u001b[0;32m/opt/homebrew/lib/python3.11/site-packages/pandas/core/reshape/concat.py:382\u001b[0m, in \u001b[0;36mconcat\u001b[0;34m(objs, axis, join, ignore_index, keys, levels, names, verify_integrity, sort, copy)\u001b[0m\n\u001b[1;32m 379\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m copy \u001b[38;5;129;01mand\u001b[39;00m using_copy_on_write():\n\u001b[1;32m 380\u001b[0m copy \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[0;32m--> 382\u001b[0m op \u001b[38;5;241m=\u001b[39m \u001b[43m_Concatenator\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 383\u001b[0m \u001b[43m \u001b[49m\u001b[43mobjs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 384\u001b[0m \u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 385\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_index\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_index\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 386\u001b[0m \u001b[43m \u001b[49m\u001b[43mjoin\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 387\u001b[0m \u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkeys\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 388\u001b[0m \u001b[43m \u001b[49m\u001b[43mlevels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 389\u001b[0m \u001b[43m \u001b[49m\u001b[43mnames\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnames\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 390\u001b[0m \u001b[43m \u001b[49m\u001b[43mverify_integrity\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverify_integrity\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 391\u001b[0m \u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 392\u001b[0m \u001b[43m \u001b[49m\u001b[43msort\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msort\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 393\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 395\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m op\u001b[38;5;241m.\u001b[39mget_result()\n", |
| 568 | + "File \u001b[0;32m/opt/homebrew/lib/python3.11/site-packages/pandas/core/reshape/concat.py:445\u001b[0m, in \u001b[0;36m_Concatenator.__init__\u001b[0;34m(self, objs, axis, join, keys, levels, names, ignore_index, verify_integrity, copy, sort)\u001b[0m\n\u001b[1;32m 442\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mverify_integrity \u001b[38;5;241m=\u001b[39m verify_integrity\n\u001b[1;32m 443\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcopy \u001b[38;5;241m=\u001b[39m copy\n\u001b[0;32m--> 445\u001b[0m objs, keys \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_clean_keys_and_objs\u001b[49m\u001b[43m(\u001b[49m\u001b[43mobjs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 447\u001b[0m \u001b[38;5;66;03m# figure out what our result ndim is going to be\u001b[39;00m\n\u001b[1;32m 448\u001b[0m ndims \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_get_ndims(objs)\n", |
| 569 | + "File \u001b[0;32m/opt/homebrew/lib/python3.11/site-packages/pandas/core/reshape/concat.py:541\u001b[0m, in \u001b[0;36m_Concatenator._clean_keys_and_objs\u001b[0;34m(self, objs, keys)\u001b[0m\n\u001b[1;32m 538\u001b[0m keys \u001b[38;5;241m=\u001b[39m Index(clean_keys, name\u001b[38;5;241m=\u001b[39mname, dtype\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mgetattr\u001b[39m(keys, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdtype\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[1;32m 540\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(objs_list) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m--> 541\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAll objects passed were None\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 543\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m objs_list, keys\n", |
| 570 | + "\u001b[0;31mValueError\u001b[0m: All objects passed were None" |
| 571 | + ] |
| 572 | + } |
| 573 | + ], |
559 | 574 | "source": [ |
560 | 575 | "from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler, MinMaxScaler\n", |
561 | 576 | "\n", |
|
578 | 593 | " transformed_data = _encode_categorical(data[col], encoder)\n", |
579 | 594 | " encoders[col] = encoder\n", |
580 | 595 | " data.drop(columns=[col], inplace=True)\n", |
581 | | - " data = pd.concat([data, transformed_data], axis=1)\n", |
| 596 | + " data = pd.concat([data.reset_index(drop=True, inplace=True), transformed_data.reset_index(drop=True, inplace=True)], axis=1)\n", |
582 | 597 | "\n", |
583 | 598 | " elif dtype == \"numerical\":\n", |
584 | 599 | " scaler = StandardScaler(with_mean= False, with_std= False)\n", |
|
588 | 603 | }, |
589 | 604 | { |
590 | 605 | "cell_type": "code", |
591 | | - "execution_count": 12, |
| 606 | + "execution_count": 13, |
592 | 607 | "metadata": {}, |
593 | 608 | "outputs": [ |
594 | 609 | { |
|
616 | 631 | }, |
617 | 632 | { |
618 | 633 | "cell_type": "code", |
619 | | - "execution_count": 13, |
| 634 | + "execution_count": null, |
620 | 635 | "metadata": {}, |
621 | 636 | "outputs": [ |
622 | 637 | { |
|
637 | 652 | }, |
638 | 653 | { |
639 | 654 | "cell_type": "code", |
640 | | - "execution_count": 14, |
| 655 | + "execution_count": null, |
641 | 656 | "metadata": {}, |
642 | 657 | "outputs": [ |
643 | 658 | { |
|
663 | 678 | }, |
664 | 679 | { |
665 | 680 | "cell_type": "code", |
666 | | - "execution_count": 15, |
| 681 | + "execution_count": null, |
667 | 682 | "metadata": {}, |
668 | 683 | "outputs": [ |
669 | 684 | { |
|
0 commit comments