You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: src/locales/en.json
+14-4Lines changed: 14 additions & 4 deletions
Original file line number
Diff line number
Diff line change
@@ -16,7 +16,7 @@
16
16
"downloadButton": "Download",
17
17
"biasSettings": {
18
18
"exportToPDF": "Download bias detection report as pdf",
19
-
"exportToJSON": "Export clusters as json",
19
+
"exportToJSON": "Export clusters as json",
20
20
"form": {
21
21
"fieldsets": {
22
22
"data": {
@@ -59,7 +59,7 @@
59
59
"syntheticData": {
60
60
"demo": {
61
61
"heading": "Information about demo dataset",
62
-
"description": "A subset of the [Law School Admission Bar](https://www.kaggle.com/datasets/danofer/law-school-admissions-bar-passage)* dataset is used as a demo. Synthetic data will be generated for the following columns:\n\n \n- sex: student gender, i.e. 1 (male), 2 (female);\n- race1: race of student, i.e., asian, black, hispanic, white, other;\n- ugpa: undergraduate GPA of student (average course grades), continous variable;\n- bar: Ground truth label indicating whether or not the student passed the bar, i.e., passed 1st time, passed 2nd time, failed, non-graduated.\n\n \n\nThe CART method will be used evaluate the distribution and correlation differences between the real and synthetic data.\n\n \n\n*The original paper can be found [here](https://files.eric.ed.gov/fulltext/ED469370.pdf)\n\n \n 0. Preview of the dataset"
62
+
"description": "A subset of the [Law School Admission Bar](https://www.kaggle.com/datasets/danofer/law-school-admissions-bar-passage)* dataset is used as a demo. Synthetic data will be generated for the following columns:\n\n \n- sex: student gender, i.e. 1 (male), 2 (female);\n- race1: race of student, i.e., asian, black, hispanic, white, other;\n- ugpa: undergraduate GPA of student (average course grades), continous variable;\n- bar: Ground truth label indicating whether or not the student passed the bar, i.e., passed 1st time, passed 2nd time, failed, non-graduated.\n\n \n\nThe CART method will be used evaluate the distribution and correlation differences between the real and synthetic data.\n\n \n\n*The original paper can be found [here](https://files.eric.ed.gov/fulltext/ED469370.pdf)\n\n \n"
63
63
},
64
64
"exportToPDF": "Download evaluation report as pdf",
65
65
"exportToJSON": "Download synthetic data as json",
@@ -89,11 +89,21 @@
89
89
"title": "Try it out!",
90
90
"description": "Do you not have a dataset at hand? No worries use our demo dataset."
91
91
},
92
-
"columnsInDataset": "1. Data types detection",
93
92
"columnsInDatasetInfo": "If detected data types are incorrect, please change this locally in the dataset before attaching it again.",
94
93
"univariateCharts": "Univariate distributions of the attached dataset",
95
94
"synthVsReal": "Univariate distributions of synthetic vs real data",
96
-
"heatmapCorrelation": "Correlation matrix"
95
+
"heatmapCorrelation": "Correlation matrix",
96
+
"dataSetPreview": {
97
+
"heading": "0. Preview of data"
98
+
},
99
+
"columnsInDataset": "1. Data types detection",
100
+
"explanatoryDataAnalysisTitle": "2. Explanatory data analysis",
101
+
"cartModelTitle": "3. CART model",
102
+
"cartModelDescription": "The CART (Classification and Regression Trees) method generates synthetic data by learning patterns from real data through a decision tree that splits data into homogeneous groups based on feature values. It predicts averages for numerical data and assigns the most common category for categorical data, using these predictions to create new synthetic points.",
103
+
"evaluationOfGeneratedDataTitle": "4. Evaluation of generated data",
Copy file name to clipboardExpand all lines: src/locales/nl.json
+12-2Lines changed: 12 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -89,11 +89,21 @@
89
89
"title": "Probeer het uit!",
90
90
"description": "Heeft u geen dataset bij de hand? Geen zorgen, gebruik onze demodataset."
91
91
},
92
-
"columnsInDataset": "1. Detectie van datatypes",
93
92
"columnsInDatasetInfo": "Als de gedetecteerd data types niet correct zijn, pas dit dan lokaal aan in de dataset voordat u deze opnieuw aan de app koppelt.",
94
93
"univariateCharts": "Univariate distributies van de gekoppelde dataset",
95
94
"synthVsReal": "Univariate distributies in synthetische vs originele data",
96
-
"heatmapCorrelation": "Correlatiematrix"
95
+
"heatmapCorrelation": "Correlatiematrix",
96
+
"dataSetPreview": {
97
+
"heading": "0. Preview van de data"
98
+
},
99
+
"columnsInDataset": "1. Detectie van datatypes",
100
+
"explanatoryDataAnalysisTitle": "2. Explanatory data analyse",
101
+
"cartModelTitle": "3. CART model",
102
+
"cartModelDescription": "De CART-methode (Classification and Regression Trees) genereert synthetische data door patronen uit echte data te leren via een beslisboom die de data opdeelt in homogene groepen op basis van kenmerkwaarden. Voor numerieke data voorspelt de methode gemiddelden, en voor categorische data wijst het de meest voorkomende categorie toe. Deze voorspellingen worden vervolgens gebruikt om nieuwe synthetische gegevenspunten te creëren.",
103
+
"evaluationOfGeneratedDataTitle": "4. Evaluatie van gegenereerde data",
0 commit comments