|
| 1 | +import numpy as np |
| 2 | +import pandas as pd |
| 3 | +import scipy.stats as stats |
| 4 | +from sklearn.impute import SimpleImputer |
| 5 | +from sklearn.linear_model import LogisticRegression |
| 6 | +from sklearn.preprocessing import LabelEncoder |
| 7 | +from fancyimpute import IterativeImputer # For MICE and EM |
| 8 | +import warnings |
| 9 | + |
| 10 | +class MissingDataHandler: |
| 11 | + """Detects missingness type (MCAR, MAR, MNAR) and applies automatic imputation.""" |
| 12 | + |
| 13 | + def __init__(self): |
| 14 | + self.imputers = {} |
| 15 | + |
| 16 | + def detect_missingness(self, df: pd.DataFrame) -> dict: |
| 17 | + """Detects missingness type for each column. |
| 18 | +
|
| 19 | + Args: |
| 20 | + df (pd.DataFrame): The input DataFrame. |
| 21 | +
|
| 22 | + Returns: |
| 23 | + dict: Dictionary mapping column names to detected missingness type. |
| 24 | + """ |
| 25 | + missingness = {} |
| 26 | + |
| 27 | + for col in df.columns: |
| 28 | + missing_values = df[col].isna().sum() |
| 29 | + if missing_values == 0: |
| 30 | + continue # No missing values → Skip detection |
| 31 | + |
| 32 | + # 1️⃣ Little's MCAR Test |
| 33 | + _, p_value = stats.chisquare(df[col].dropna().value_counts()) |
| 34 | + if p_value > 0.05: |
| 35 | + missingness[col] = "MCAR" |
| 36 | + continue |
| 37 | + |
| 38 | + # 2️⃣ Logistic Regression (MAR Detection) |
| 39 | + missing_mask = df[col].isna().astype(int) |
| 40 | + observed_data = df.drop(columns=[col]).fillna(df.mean()) |
| 41 | + |
| 42 | + model = LogisticRegression() |
| 43 | + model.fit(observed_data, missing_mask) |
| 44 | + if model.score(observed_data, missing_mask) > 0.6: # Predictable missingness → MAR |
| 45 | + missingness[col] = "MAR" |
| 46 | + continue |
| 47 | + |
| 48 | + # 3️⃣ Distributional Check (MNAR Detection) |
| 49 | + observed_values = df[col].dropna() |
| 50 | + missing_rows = df[col].isna() |
| 51 | + if missing_rows.sum() > 0: |
| 52 | + missing_values = df.loc[missing_rows, df.columns != col].mean(axis=1) |
| 53 | + _, p_value = stats.ks_2samp(observed_values, missing_values) |
| 54 | + if p_value < 0.05: |
| 55 | + missingness[col] = "MNAR" |
| 56 | + continue |
| 57 | + |
| 58 | + missingness[col] = "MAR" # Default to MAR if uncertain |
| 59 | + |
| 60 | + return missingness |
| 61 | + |
| 62 | + def apply_imputation(self, df: pd.DataFrame, missingness: dict) -> pd.DataFrame: |
| 63 | + """Automatically applies imputation based on missingness type. |
| 64 | +
|
| 65 | + Args: |
| 66 | + df (pd.DataFrame): Input data with missing values. |
| 67 | + missingness (dict): Mapping of column names to missingness type. |
| 68 | +
|
| 69 | + Returns: |
| 70 | + pd.DataFrame: Data with imputed values. |
| 71 | + """ |
| 72 | + df = df.copy() |
| 73 | + |
| 74 | + for col, mtype in missingness.items(): |
| 75 | + if df[col].dtype == "object": |
| 76 | + # Categorical Data |
| 77 | + if mtype == "MCAR": |
| 78 | + df[col].fillna(df[col].mode()[0], inplace=True) # Mode Imputation |
| 79 | + elif mtype == "MAR": |
| 80 | + encoder = LabelEncoder() |
| 81 | + df[col] = encoder.fit_transform(df[col].astype(str)) |
| 82 | + df[col] = IterativeImputer().fit_transform(df[[col]]) # Classification-based |
| 83 | + elif mtype == "MNAR": |
| 84 | + df[col].fillna("Missing", inplace=True) # Add "Missing" Category |
| 85 | + |
| 86 | + else: |
| 87 | + # Numerical Data |
| 88 | + if mtype == "MCAR": |
| 89 | + df[col] = SimpleImputer(strategy="mean").fit_transform(df[[col]]) |
| 90 | + elif mtype == "MAR": |
| 91 | + df[col] = IterativeImputer().fit_transform(df[[col]]) # Regression-based |
| 92 | + elif mtype == "MNAR": |
| 93 | + df[col] = IterativeImputer().fit_transform(df[[col]]) # EM Algorithm |
| 94 | + |
| 95 | + return df |
0 commit comments