|
78 | 78 | subjects = np.arange(10) |
79 | 79 |
|
80 | 80 | # define output file where means, standard deviations, and variances will be stored |
81 | | -fc_stats_FILE = 'fc_stats_repeat.txt' |
| 81 | +fc_stats_FILE = 'fc_stats_with_feedback.txt' |
82 | 82 |
|
83 | 83 | # define the names of the input files where the correlation coefficients were stored |
84 | | -func_conn_syn_dms_subj1 = 'subject_11/output.36trials.repeat/corr_syn_IT_vs_all_dms.npy' |
85 | | -func_conn_syn_dms_subj2 = 'subject_12/output.36trials.repeat/corr_syn_IT_vs_all_dms.npy' |
86 | | -func_conn_syn_dms_subj3 = 'subject_13/output.36trials.repeat/corr_syn_IT_vs_all_dms.npy' |
87 | | -func_conn_syn_dms_subj4 = 'subject_14/output.36trials.repeat/corr_syn_IT_vs_all_dms.npy' |
88 | | -func_conn_syn_dms_subj5 = 'subject_15/output.36trials.repeat/corr_syn_IT_vs_all_dms.npy' |
89 | | -func_conn_syn_dms_subj6 = 'subject_16/output.36trials.repeat/corr_syn_IT_vs_all_dms.npy' |
90 | | -func_conn_syn_dms_subj7 = 'subject_17/output.36trials.repeat/corr_syn_IT_vs_all_dms.npy' |
91 | | -func_conn_syn_dms_subj8 = 'subject_18/output.36trials.repeat/corr_syn_IT_vs_all_dms.npy' |
92 | | -func_conn_syn_dms_subj9 = 'subject_19/output.36trials.repeat/corr_syn_IT_vs_all_dms.npy' |
93 | | -func_conn_syn_dms_subj10 = 'subject_20/output.36trials.repeat/corr_syn_IT_vs_all_dms.npy' |
94 | | -func_conn_syn_ctl_subj1 = 'subject_11/output.36trials.repeat/corr_syn_IT_vs_all_ctl.npy' |
95 | | -func_conn_syn_ctl_subj2 = 'subject_12/output.36trials.repeat/corr_syn_IT_vs_all_ctl.npy' |
96 | | -func_conn_syn_ctl_subj3 = 'subject_13/output.36trials.repeat/corr_syn_IT_vs_all_ctl.npy' |
97 | | -func_conn_syn_ctl_subj4 = 'subject_14/output.36trials.repeat/corr_syn_IT_vs_all_ctl.npy' |
98 | | -func_conn_syn_ctl_subj5 = 'subject_15/output.36trials.repeat/corr_syn_IT_vs_all_ctl.npy' |
99 | | -func_conn_syn_ctl_subj6 = 'subject_16/output.36trials.repeat/corr_syn_IT_vs_all_ctl.npy' |
100 | | -func_conn_syn_ctl_subj7 = 'subject_17/output.36trials.repeat/corr_syn_IT_vs_all_ctl.npy' |
101 | | -func_conn_syn_ctl_subj8 = 'subject_18/output.36trials.repeat/corr_syn_IT_vs_all_ctl.npy' |
102 | | -func_conn_syn_ctl_subj9 = 'subject_19/output.36trials.repeat/corr_syn_IT_vs_all_ctl.npy' |
103 | | -func_conn_syn_ctl_subj10 = 'subject_20/output.36trials.repeat/corr_syn_IT_vs_all_ctl.npy' |
104 | | -func_conn_fmri_dms_subj1 = 'subject_11/output.36trials.repeat/corr_fmri_IT_vs_all_dms_balloon.npy' |
105 | | -func_conn_fmri_dms_subj2 = 'subject_12/output.36trials.repeat/corr_fmri_IT_vs_all_dms_balloon.npy' |
106 | | -func_conn_fmri_dms_subj3 = 'subject_13/output.36trials.repeat/corr_fmri_IT_vs_all_dms_balloon.npy' |
107 | | -func_conn_fmri_dms_subj4 = 'subject_14/output.36trials.repeat/corr_fmri_IT_vs_all_dms_balloon.npy' |
108 | | -func_conn_fmri_dms_subj5 = 'subject_15/output.36trials.repeat/corr_fmri_IT_vs_all_dms_balloon.npy' |
109 | | -func_conn_fmri_dms_subj6 = 'subject_16/output.36trials.repeat/corr_fmri_IT_vs_all_dms_balloon.npy' |
110 | | -func_conn_fmri_dms_subj7 = 'subject_17/output.36trials.repeat/corr_fmri_IT_vs_all_dms_balloon.npy' |
111 | | -func_conn_fmri_dms_subj8 = 'subject_18/output.36trials.repeat/corr_fmri_IT_vs_all_dms_balloon.npy' |
112 | | -func_conn_fmri_dms_subj9 = 'subject_19/output.36trials.repeat/corr_fmri_IT_vs_all_dms_balloon.npy' |
113 | | -func_conn_fmri_dms_subj10 = 'subject_20/output.36trials.repeat/corr_fmri_IT_vs_all_dms_balloon.npy' |
114 | | -func_conn_fmri_ctl_subj1 = 'subject_11/output.36trials.repeat/corr_fmri_IT_vs_all_ctl_balloon.npy' |
115 | | -func_conn_fmri_ctl_subj2 = 'subject_12/output.36trials.repeat/corr_fmri_IT_vs_all_ctl_balloon.npy' |
116 | | -func_conn_fmri_ctl_subj3 = 'subject_13/output.36trials.repeat/corr_fmri_IT_vs_all_ctl_balloon.npy' |
117 | | -func_conn_fmri_ctl_subj4 = 'subject_14/output.36trials.repeat/corr_fmri_IT_vs_all_ctl_balloon.npy' |
118 | | -func_conn_fmri_ctl_subj5 = 'subject_15/output.36trials.repeat/corr_fmri_IT_vs_all_ctl_balloon.npy' |
119 | | -func_conn_fmri_ctl_subj6 = 'subject_16/output.36trials.repeat/corr_fmri_IT_vs_all_ctl_balloon.npy' |
120 | | -func_conn_fmri_ctl_subj7 = 'subject_17/output.36trials.repeat/corr_fmri_IT_vs_all_ctl_balloon.npy' |
121 | | -func_conn_fmri_ctl_subj8 = 'subject_18/output.36trials.repeat/corr_fmri_IT_vs_all_ctl_balloon.npy' |
122 | | -func_conn_fmri_ctl_subj9 = 'subject_19/output.36trials.repeat/corr_fmri_IT_vs_all_ctl_balloon.npy' |
123 | | -func_conn_fmri_ctl_subj10 = 'subject_20/output.36trials.repeat/corr_fmri_IT_vs_all_ctl_balloon.npy' |
| 84 | +func_conn_syn_dms_subj1 = 'subject_11/output.36trials.with_feedback/corr_syn_IT_vs_all_dms.npy' |
| 85 | +func_conn_syn_dms_subj2 = 'subject_12/output.36trials.with_feedback/corr_syn_IT_vs_all_dms.npy' |
| 86 | +func_conn_syn_dms_subj3 = 'subject_13/output.36trials.with_feedback/corr_syn_IT_vs_all_dms.npy' |
| 87 | +func_conn_syn_dms_subj4 = 'subject_14/output.36trials.with_feedback/corr_syn_IT_vs_all_dms.npy' |
| 88 | +func_conn_syn_dms_subj5 = 'subject_15/output.36trials.with_feedback/corr_syn_IT_vs_all_dms.npy' |
| 89 | +func_conn_syn_dms_subj6 = 'subject_16/output.36trials.with_feedback/corr_syn_IT_vs_all_dms.npy' |
| 90 | +func_conn_syn_dms_subj7 = 'subject_17/output.36trials.with_feedback/corr_syn_IT_vs_all_dms.npy' |
| 91 | +func_conn_syn_dms_subj8 = 'subject_18/output.36trials.with_feedback/corr_syn_IT_vs_all_dms.npy' |
| 92 | +func_conn_syn_dms_subj9 = 'subject_19/output.36trials.with_feedback/corr_syn_IT_vs_all_dms.npy' |
| 93 | +func_conn_syn_dms_subj10 = 'subject_20/output.36trials.with_feedback/corr_syn_IT_vs_all_dms.npy' |
| 94 | +func_conn_syn_ctl_subj1 = 'subject_11/output.36trials.with_feedback/corr_syn_IT_vs_all_ctl.npy' |
| 95 | +func_conn_syn_ctl_subj2 = 'subject_12/output.36trials.with_feedback/corr_syn_IT_vs_all_ctl.npy' |
| 96 | +func_conn_syn_ctl_subj3 = 'subject_13/output.36trials.with_feedback/corr_syn_IT_vs_all_ctl.npy' |
| 97 | +func_conn_syn_ctl_subj4 = 'subject_14/output.36trials.with_feedback/corr_syn_IT_vs_all_ctl.npy' |
| 98 | +func_conn_syn_ctl_subj5 = 'subject_15/output.36trials.with_feedback/corr_syn_IT_vs_all_ctl.npy' |
| 99 | +func_conn_syn_ctl_subj6 = 'subject_16/output.36trials.with_feedback/corr_syn_IT_vs_all_ctl.npy' |
| 100 | +func_conn_syn_ctl_subj7 = 'subject_17/output.36trials.with_feedback/corr_syn_IT_vs_all_ctl.npy' |
| 101 | +func_conn_syn_ctl_subj8 = 'subject_18/output.36trials.with_feedback/corr_syn_IT_vs_all_ctl.npy' |
| 102 | +func_conn_syn_ctl_subj9 = 'subject_19/output.36trials.with_feedback/corr_syn_IT_vs_all_ctl.npy' |
| 103 | +func_conn_syn_ctl_subj10 = 'subject_20/output.36trials.with_feedback/corr_syn_IT_vs_all_ctl.npy' |
| 104 | +func_conn_fmri_dms_subj1 = 'subject_11/output.36trials.with_feedback/corr_fmri_IT_vs_all_dms_balloon.npy' |
| 105 | +func_conn_fmri_dms_subj2 = 'subject_12/output.36trials.with_feedback/corr_fmri_IT_vs_all_dms_balloon.npy' |
| 106 | +func_conn_fmri_dms_subj3 = 'subject_13/output.36trials.with_feedback/corr_fmri_IT_vs_all_dms_balloon.npy' |
| 107 | +func_conn_fmri_dms_subj4 = 'subject_14/output.36trials.with_feedback/corr_fmri_IT_vs_all_dms_balloon.npy' |
| 108 | +func_conn_fmri_dms_subj5 = 'subject_15/output.36trials.with_feedback/corr_fmri_IT_vs_all_dms_balloon.npy' |
| 109 | +func_conn_fmri_dms_subj6 = 'subject_16/output.36trials.with_feedback/corr_fmri_IT_vs_all_dms_balloon.npy' |
| 110 | +func_conn_fmri_dms_subj7 = 'subject_17/output.36trials.with_feedback/corr_fmri_IT_vs_all_dms_balloon.npy' |
| 111 | +func_conn_fmri_dms_subj8 = 'subject_18/output.36trials.with_feedback/corr_fmri_IT_vs_all_dms_balloon.npy' |
| 112 | +func_conn_fmri_dms_subj9 = 'subject_19/output.36trials.with_feedback/corr_fmri_IT_vs_all_dms_balloon.npy' |
| 113 | +func_conn_fmri_dms_subj10 = 'subject_20/output.36trials.with_feedback/corr_fmri_IT_vs_all_dms_balloon.npy' |
| 114 | +func_conn_fmri_ctl_subj1 = 'subject_11/output.36trials.with_feedback/corr_fmri_IT_vs_all_ctl_balloon.npy' |
| 115 | +func_conn_fmri_ctl_subj2 = 'subject_12/output.36trials.with_feedback/corr_fmri_IT_vs_all_ctl_balloon.npy' |
| 116 | +func_conn_fmri_ctl_subj3 = 'subject_13/output.36trials.with_feedback/corr_fmri_IT_vs_all_ctl_balloon.npy' |
| 117 | +func_conn_fmri_ctl_subj4 = 'subject_14/output.36trials.with_feedback/corr_fmri_IT_vs_all_ctl_balloon.npy' |
| 118 | +func_conn_fmri_ctl_subj5 = 'subject_15/output.36trials.with_feedback/corr_fmri_IT_vs_all_ctl_balloon.npy' |
| 119 | +func_conn_fmri_ctl_subj6 = 'subject_16/output.36trials.with_feedback/corr_fmri_IT_vs_all_ctl_balloon.npy' |
| 120 | +func_conn_fmri_ctl_subj7 = 'subject_17/output.36trials.with_feedback/corr_fmri_IT_vs_all_ctl_balloon.npy' |
| 121 | +func_conn_fmri_ctl_subj8 = 'subject_18/output.36trials.with_feedback/corr_fmri_IT_vs_all_ctl_balloon.npy' |
| 122 | +func_conn_fmri_ctl_subj9 = 'subject_19/output.36trials.with_feedback/corr_fmri_IT_vs_all_ctl_balloon.npy' |
| 123 | +func_conn_fmri_ctl_subj10 = 'subject_20/output.36trials.with_feedback/corr_fmri_IT_vs_all_ctl_balloon.npy' |
124 | 124 |
|
125 | 125 | # open files that contain correlation coefficients |
126 | 126 | fc_syn_dms_subj1 = np.load(func_conn_syn_dms_subj1) |
|
298 | 298 | fc_fmri_dms_mean, fc_fmri_ctl_mean]), |
299 | 299 | columns=np.array(['V1', 'V4', 'FS', 'D1', 'D2', 'FR', 'cIT']), |
300 | 300 | index=np.array(['DMS-syn', 'CTL-syn', 'DMS-fmri', 'CTL-fmri'])) |
301 | | -#fc_std = pd.DataFrame(np.array([fc_syn_dms_std, fc_syn_ctl_std, |
302 | | -# fc_fmri_dms_std, fc_fmri_ctl_std]), |
303 | | -# columns=np.array(['V1', 'V4', 'D1', 'D2', 'FS', 'FR']), |
304 | | -# index=np.array(['DMS-syn', 'CTL-syn', 'DMS-fmri', 'CTL-fmri'])) |
| 301 | +fc_std = pd.DataFrame(np.array([fc_syn_dms_std, fc_syn_ctl_std, |
| 302 | + fc_fmri_dms_std, fc_fmri_ctl_std]), |
| 303 | + columns=np.array(['V1', 'V4', 'FS', 'D1', 'D2', 'FR', 'cIT']), |
| 304 | + index=np.array(['DMS-syn', 'CTL-syn', 'DMS-fmri', 'CTL-fmri'])) |
305 | 305 |
|
306 | 306 | # now, plot means and std's using 'pandas framework... |
307 | 307 |
|
|
312 | 312 |
|
313 | 313 | ax = plt.gca() # get hold of the axes |
314 | 314 |
|
315 | | -bars=fc_mean.plot(ax=ax, kind='bar', |
| 315 | +bars=fc_mean.plot(yerr=fc_std, ax=ax, kind='bar', |
316 | 316 | color=['yellow', 'green', 'orange', 'red', 'pink', 'purple', 'lightblue'], |
317 | | - ylim=[-0.02,1]) |
| 317 | + ylim=[-0.1, 1.1]) |
318 | 318 |
|
319 | 319 | # change the location of the legend |
320 | 320 | ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, |
|
325 | 325 | #plt.tight_layout() |
326 | 326 |
|
327 | 327 | # optional figure caption |
328 | | -mpl_fig.subplots_adjust(bottom=0.2) |
329 | | -mpl_fig.text(.1, 0.03, txt) |
| 328 | +#mpl_fig.subplots_adjust(bottom=0.2) |
| 329 | +#mpl_fig.text(.1, 0.03, txt) |
330 | 330 |
|
331 | 331 | # Show the plots on the screen |
332 | 332 | plt.show() |
|
0 commit comments