-
Notifications
You must be signed in to change notification settings - Fork 52
Open
Description
Hi,
I tried to use a three-layer CNN on CIFAR10 to reproduce the work like what the paper mentions.I chose the autoencoder.Latent_AE_cnn_big as ae_model in the ae_ddpm.yaml. The classification accuracy of the reconstructed CNN can achieve a comparable level 79%. However, when starting training the diff-network, the accuracy drops to 10%.
Is the diff-model I used or other setting correct?
name: ae_ddpm
ae_model:
_target_: core.module.modules.autoencoder.Latent_AE_cnn_big
in_dim: 39882 #2048
model:
arch:
_target_: core.module.wrapper.ema.EMA
model:
_target_: core.module.modules.od_unet.AE_CNN_bottleneck
in_dim: 52
beta_schedule:
start: 1e-4
end: 2e-2
schedule: linear
n_timestep: 1000
model_mean_type: eps
model_var_type: fixedlarge
loss_type: mse
train:
split_epoch: 30000
optimizer:
_target_: torch.optim.AdamW
lr: 1e-3
weight_decay: 2e-6
ae_optimizer:
_target_: torch.optim.AdamW
lr: 1e-3
weight_decay: 2e-6
lr_scheduler:
Thank you
Metadata
Metadata
Assignees
Labels
No labels