|
| 1 | +import pytest |
| 2 | +import torch |
| 3 | +import torch.nn as nn |
| 4 | +from torch2trt import torch2trt, trt |
| 5 | + |
| 6 | + |
| 7 | +class YOLOXFocusTestModule(nn.Module): |
| 8 | + |
| 9 | + |
| 10 | + def forward(self, x): |
| 11 | + patch_top_left = x[..., ::2, ::2] |
| 12 | + patch_top_right = x[..., ::2, 1::2] |
| 13 | + patch_bot_left = x[..., 1::2, ::2] |
| 14 | + patch_bot_right = x[..., 1::2, 1::2] |
| 15 | + x = torch.cat( |
| 16 | + ( |
| 17 | + patch_top_left, |
| 18 | + patch_bot_left, |
| 19 | + patch_top_right, |
| 20 | + patch_bot_right, |
| 21 | + ), |
| 22 | + dim=1, |
| 23 | + ) |
| 24 | + return x |
| 25 | + |
| 26 | + |
| 27 | +def test_getitem_dynamic_yolox_layer(): |
| 28 | + |
| 29 | + class YOLOXFocusTestModule(nn.Module): |
| 30 | + |
| 31 | + |
| 32 | + def forward(self, x): |
| 33 | + patch_top_left = x[..., ::2, ::2] |
| 34 | + patch_top_right = x[..., ::2, 1::2] |
| 35 | + patch_bot_left = x[..., 1::2, ::2] |
| 36 | + patch_bot_right = x[..., 1::2, 1::2] |
| 37 | + x = torch.cat( |
| 38 | + ( |
| 39 | + patch_top_left, |
| 40 | + patch_bot_left, |
| 41 | + patch_top_right, |
| 42 | + patch_bot_right, |
| 43 | + ), |
| 44 | + dim=1, |
| 45 | + ) |
| 46 | + return x |
| 47 | + |
| 48 | + module = YOLOXFocusTestModule().cuda().eval() |
| 49 | + |
| 50 | + data = torch.randn(1, 3, 112, 112).cuda() |
| 51 | + |
| 52 | + module_trt = torch2trt(module, [data], max_batch_size=4, log_level=trt.Logger.VERBOSE) |
| 53 | + |
| 54 | + data = torch.randn(1, 3, 112, 112).cuda() |
| 55 | + assert(torch.allclose(module_trt(data), module(data), atol=1e-4, rtol=1e-4)) |
| 56 | + |
| 57 | + data = torch.randn(4, 3, 112, 112).cuda() |
| 58 | + assert(torch.allclose(module_trt(data), module(data), atol=1e-4, rtol=1e-4)) |
| 59 | + |
| 60 | + |
| 61 | +def test_getitem_dynamic_add_dim(): |
| 62 | + |
| 63 | + class TestModule(nn.Module): |
| 64 | + |
| 65 | + |
| 66 | + def forward(self, x): |
| 67 | + patch_top_left = x[..., None] |
| 68 | + patch_top_right = x[..., None] |
| 69 | + patch_bot_left = x[..., None] |
| 70 | + patch_bot_right = x[..., None] |
| 71 | + x = torch.cat( |
| 72 | + ( |
| 73 | + patch_top_left, |
| 74 | + patch_bot_left, |
| 75 | + patch_top_right, |
| 76 | + patch_bot_right, |
| 77 | + ), |
| 78 | + dim=1, |
| 79 | + ) |
| 80 | + return x |
| 81 | + |
| 82 | + module = TestModule().cuda().eval() |
| 83 | + |
| 84 | + data = torch.randn(1, 3, 112, 112).cuda() |
| 85 | + |
| 86 | + module_trt = torch2trt(module, [data], max_batch_size=4, log_level=trt.Logger.VERBOSE) |
| 87 | + |
| 88 | + data = torch.randn(1, 3, 112, 112).cuda() |
| 89 | + assert(torch.allclose(module_trt(data), module(data), atol=1e-4, rtol=1e-4)) |
| 90 | + |
| 91 | + data = torch.randn(4, 3, 112, 112).cuda() |
| 92 | + assert(torch.allclose(module_trt(data), module(data), atol=1e-4, rtol=1e-4)) |
| 93 | + |
| 94 | + |
| 95 | +def test_getitem_dynamic_remove_dim(): |
| 96 | + |
| 97 | + class TestModule(nn.Module): |
| 98 | + |
| 99 | + |
| 100 | + def forward(self, x): |
| 101 | + patch_top_left = x[..., 0] |
| 102 | + patch_top_right = x[..., 0] |
| 103 | + patch_bot_left = x[..., 0] |
| 104 | + patch_bot_right = x[..., 0] |
| 105 | + x = torch.cat( |
| 106 | + ( |
| 107 | + patch_top_left, |
| 108 | + patch_bot_left, |
| 109 | + patch_top_right, |
| 110 | + patch_bot_right, |
| 111 | + ), |
| 112 | + dim=1, |
| 113 | + ) |
| 114 | + return x |
| 115 | + |
| 116 | + module = TestModule().cuda().eval() |
| 117 | + |
| 118 | + data = torch.randn(1, 3, 112, 112).cuda() |
| 119 | + |
| 120 | + module_trt = torch2trt(module, [data], max_batch_size=4, log_level=trt.Logger.VERBOSE) |
| 121 | + |
| 122 | + data = torch.randn(1, 3, 112, 112).cuda() |
| 123 | + assert(torch.allclose(module_trt(data), module(data), atol=1e-4, rtol=1e-4)) |
| 124 | + |
| 125 | + data = torch.randn(4, 3, 112, 112).cuda() |
| 126 | + assert(torch.allclose(module_trt(data), module(data), atol=1e-4, rtol=1e-4)) |
| 127 | + |
| 128 | + |
| 129 | +def test_getitem_dynamic_remove_add_dim(): |
| 130 | + |
| 131 | + class TestModule(nn.Module): |
| 132 | + |
| 133 | + |
| 134 | + def forward(self, x): |
| 135 | + patch_top_left = x[..., 0, None] |
| 136 | + patch_top_right = x[..., 0, None] |
| 137 | + patch_bot_left = x[..., 0, None] |
| 138 | + patch_bot_right = x[..., 0, None] |
| 139 | + x = torch.cat( |
| 140 | + ( |
| 141 | + patch_top_left, |
| 142 | + patch_bot_left, |
| 143 | + patch_top_right, |
| 144 | + patch_bot_right, |
| 145 | + ), |
| 146 | + dim=1, |
| 147 | + ) |
| 148 | + return x |
| 149 | + |
| 150 | + module = TestModule().cuda().eval() |
| 151 | + |
| 152 | + data = torch.randn(1, 3, 112, 112).cuda() |
| 153 | + |
| 154 | + module_trt = torch2trt(module, [data], max_batch_size=4, log_level=trt.Logger.VERBOSE) |
| 155 | + |
| 156 | + data = torch.randn(1, 3, 112, 112).cuda() |
| 157 | + assert(torch.allclose(module_trt(data), module(data), atol=1e-4, rtol=1e-4)) |
| 158 | + |
| 159 | + data = torch.randn(4, 3, 112, 112).cuda() |
| 160 | + assert(torch.allclose(module_trt(data), module(data), atol=1e-4, rtol=1e-4)) |
| 161 | + |
0 commit comments