@@ -69,7 +69,7 @@ You could wrap this dataset for calibration, by defining a new dataset which ret
6969
7070``` python
7171from torchvision.datasets import ImageFolder
72- from torchvision.transforms import ToTensor, Compose, Normalize
72+ from torchvision.transforms import ToTensor, Compose, Normalize, Resize
7373
7474
7575class ImageFolderCalibDataset ():
@@ -78,9 +78,9 @@ class ImageFolderCalibDataset():
7878 self .dataset = ImageFolder(
7979 root = root,
8080 transform = Compose([
81- transforms. Resize((224 , 224 )),
82- transforms. ToTensor(),
83- transforms. Normalize([0.485 , 0.456 , 0.406 ], [0.229 , 0.224 , 0.225 ])
81+ Resize((224 , 224 )),
82+ ToTensor(),
83+ Normalize([0.485 , 0.456 , 0.406 ], [0.229 , 0.224 , 0.225 ])
8484 ])
8585 )
8686
@@ -105,7 +105,7 @@ model_trt = torch2trt(model, [data], int8_calib_dataset=dataset)
105105
106106To override the default calibration algorithm that torch2trt uses, you can set the `` int8_calib_algoirthm ``
107107to the [ `` tensorrt.CalibrationAlgoType `` ] ( https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Int8/Calibrator.html#iint8calibrator )
108- that you wish to use. For example, to use the minmax calibration algoirthm you would do
108+ that you wish to use. For example, to use the minmax calibration algorithm you would do
109109
110110``` python
111111import tensorrt as trt
@@ -129,7 +129,7 @@ The data type of input and output bindings in TensorRT are determined by the ori
129129PyTorch module input and output data types.
130130This does not directly impact whether the TensorRT optimizer will internally use fp16 or int8 precision.
131131
132- For example, to create a model with half precision bindings, you would do the following
132+ For example, to create a model with fp32 precision bindings, you would do the following
133133
134134``` python
135135model = model.float()
@@ -149,4 +149,4 @@ model_trt = torch2trt(model, [data], fp16_mode=True)
149149```
150150
151151Now, the input and output bindings of the model are half precision, and internally the optimizer may
152- choose to select fp16 layers as well.
152+ choose to select fp16 layers as well.
0 commit comments