-
Notifications
You must be signed in to change notification settings - Fork 15
Open
Description
the pipeline generated from tensorflow trained model cannot be inferenced successfully.
-
merline docker: nvcr.io/nvidia/merlin/merlin-tensorflow:23.12
-
the scripts I use:
-
how tritonserver is launched
tritonserver --model-repository=pipeline_tf --http-port=8081 --grpc-port=8082 --metrics-port=8083 --model-control-mode=poll- the error I met:
RuntimeError: Error: <class 'TypeError'> - data type 'list' not understood,
Traceback:
File "/root/raid/common_models/recommend_system/merlin/movielens/pipeline_tf/0_transformworkflowtriton/1/model.py", line 117, in execute
transformed = self.runner.run_workflow(input_tensors)
File "/usr/local/lib/python3.10/dist-packages/merlin/systems/workflow/base.py", line 103, in run_workflow
transformed = LocalExecutor().transform(transformable, self.workflow.graph)
File "/usr/local/lib/python3.10/dist-packages/merlin/dag/executors.py", line 102, in transform
transformed_data = self._execute_node(node, transformable, capture_dtypes, strict)
File "/usr/local/lib/python3.10/dist-packages/merlin/dag/executors.py", line 116, in _execute_node
upstream_outputs = self._run_upstream_transforms(
File "/usr/local/lib/python3.10/dist-packages/merlin/dag/executors.py", line 130, in _run_upstream_transforms
node_output = self._execute_node(
File "/usr/local/lib/python3.10/dist-packages/merlin/dag/executors.py", line 116, in _execute_node
upstream_outputs = self._run_upstream_transforms(
File "/usr/local/lib/python3.10/dist-packages/merlin/dag/executors.py", line 130, in _run_upstream_transforms
node_output = self._execute_node(
File "/usr/local/lib/python3.10/dist-packages/merlin/dag/executors.py", line 122, in _execute_node
transform_output = self._run_node_transform(node, transform_input, capture_dtypes, strict)
File "/usr/local/lib/python3.10/dist-packages/merlin/dag/executors.py", line 250, in _run_node_transform
raise exc
File "/usr/local/lib/python3.10/dist-packages/merlin/dag/executors.py", line 237, in _run_node_transform
transformed_data = node.op.transform(selection, input_data)
File "/usr/local/lib/python3.10/dist-packages/nvtabular/ops/join_external.py", line 159, in transform
new_df = self._merge(df, self._ext)
File "/usr/local/lib/python3.10/dist-packages/nvtabular/ops/join_external.py", line 120, in _ext
return convert_data(self._ext_cache, cpu=self.cpu)
File "/usr/local/lib/python3.10/dist-packages/merlin/core/dispatch.py", line 674, in convert_data
_x = x if isinstance(x, pd.DataFrame) else x.to_pandas()
File "pyarrow/array.pxi", line 830, in pyarrow.lib._PandasConvertible.to_pandas
File "pyarrow/table.pxi", line 3908, in pyarrow.lib.Table._to_pandas
File "/usr/local/lib/python3.10/dist-packages/pyarrow/pandas_compat.py", line 812, in table_to_blockmanager
ext_columns_dtypes = _get_extension_dtypes(
File "/usr/local/lib/python3.10/dist-packages/pyarrow/pandas_compat.py", line 865, in _get_extension_dtypes
pandas_dtype = _pandas_api.pandas_dtype(dtype)
File "pyarrow/pandas-shim.pxi", line 146, in pyarrow.lib._PandasAPIShim.pandas_dtype
File "pyarrow/pandas-shim.pxi", line 149, in pyarrow.lib._PandasAPIShim.pandas_dtype
File "/usr/local/lib/python3.10/dist-packages/pandas/core/dtypes/common.py", line 1781, in pandas_dtype
npdtype = np.dtype(dtype)Metadata
Metadata
Assignees
Labels
No labels