@@ -59,7 +59,7 @@ docker run --rm -it --gpus all \
5959### Megatron Bridge Path
6060
6161#### Run a Receipe
62- You can find all predefined recipes under [ recipes] ( https://github.com/NVIDIA-NeMo/DFM/tree/main/examples/megatron/recipes ) directory.
62+ You can find all predefined recipes under [ recipes] ( https://github.com/NVIDIA-NeMo/DFM/tree/main/examples/megatron/recipes ) directory.
6363
6464> ** Note:** You will have to use [ uv] ( https://docs.astral.sh/uv/ ) to run the recipes. Please use ` --group ` as ` megatron-bridge ` .
6565
@@ -122,7 +122,7 @@ DFM provides out-of-the-box support for state-of-the-art diffusion architectures
122122
123123| Model | Type | Megatron Bridge | AutoModel | Description |
124124| -------| ------| -----------------| -----------| -------------|
125- | ** DiT** | Image/Video | [ pretrain, finetune ] ( @Sajad ) | 🔜 | Diffusion Transformers with scalable architecture |
125+ | ** DiT** | Image/Video | [ pretrain] ( https://github.com/NVIDIA-NeMo/DFM/blob/main/examples/megatron/recipes/dit/pretrain_dit_model.py ) , [ inference ] ( https://github.com/NVIDIA-NeMo/DFM/blob/main/examples/megatron/recipes/dit/inference_dit_model.py ) | 🔜 | Diffusion Transformers with scalable architecture |
126126| ** WAN 2.1** | Video | [ inference] ( https://github.com/NVIDIA-NeMo/DFM/blob/main/examples/megatron/recipes/wan/inference_wan.py ) , [ pretrain, finetune] ( https://github.com/NVIDIA-NeMo/DFM/blob/main/examples/megatron/recipes/wan/pretrain_wan.py ) , conversion(@Huy ) | @Linnan , @Alex | World Action Networks for video generation |
127127
128128## Performance Benchmarking
169169| ** Learning Curve** | Steeper (more knobs) | Gentler (YAML-driven) |
170170| ** Performance** | Highest at scale | Excellent, pytorch-native |
171171
172- ** Recommendation** :
172+ ** Recommendation** :
173173- Start with ** AutoModel** for quick prototyping and HF model compatibility
174174- Move to ** Megatron Bridge** when scaling to 100+ GPUs or need advanced parallelism
175175- Use ** both** : prototype with AutoModel, scale with Megatron Bridge!
@@ -195,4 +195,3 @@ NeMo DFM builds upon the excellent work of:
195195- [ NeMo AutoModel] ( https://github.com/NVIDIA-NeMo/Automodel ) - PyTorch-native SPMD training
196196- [ PyTorch Distributed] ( https://pytorch.org/docs/stable/distributed.html ) - Foundation for distributed training
197197- [ Diffusers] ( https://github.com/huggingface/diffusers ) - Diffusion model implementations
198-
0 commit comments